Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma par...Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.展开更多
Cubic (Zn,Li)TiO3 powders were synthesized through a modified sol-gel route including the Pechini process via a three-step heat treatment.The as-synthesized (Zn,Li)TiO3 could be stable up to 1000 °C.The diele...Cubic (Zn,Li)TiO3 powders were synthesized through a modified sol-gel route including the Pechini process via a three-step heat treatment.The as-synthesized (Zn,Li)TiO3 could be stable up to 1000 °C.The dielectric constant and dielectric loss tangent of all the synthesized (Zn,Li)TiO3 samples at different measurement frequencies showed the similar tendency.At the same frequency,the dielectric constant and the dielectric loss tangent of (Zn,Li)TiO3 samples decreased and increased,respectively,with the lithium doping content increase.The as-prepared (Zn,Li)TiO3 showed improved microwave dielectric properties,and its maximum value of quality factor could reach 34000 GHz.展开更多
文摘Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.
基金Supported by the National Natural Science Foundation of China(Nos.20731001,20871015 and 50725415)the Program for New Century Excellent Talents in University,China(NCET)+1 种基金the National Basic Research Program of China(No.2007CB613601)the Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT0708)
文摘Cubic (Zn,Li)TiO3 powders were synthesized through a modified sol-gel route including the Pechini process via a three-step heat treatment.The as-synthesized (Zn,Li)TiO3 could be stable up to 1000 °C.The dielectric constant and dielectric loss tangent of all the synthesized (Zn,Li)TiO3 samples at different measurement frequencies showed the similar tendency.At the same frequency,the dielectric constant and the dielectric loss tangent of (Zn,Li)TiO3 samples decreased and increased,respectively,with the lithium doping content increase.The as-prepared (Zn,Li)TiO3 showed improved microwave dielectric properties,and its maximum value of quality factor could reach 34000 GHz.