期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Liquid Water Path Retrieval Using the Lowest Frequency Channels of Fengyun-3C Microwave Radiation Imager(MWRI) 被引量:8
1
作者 Fei TANG Xiaolei ZOU 《Journal of Meteorological Research》 SCIE CSCD 2017年第6期1109-1122,共14页
The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness... The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels. 展开更多
关键词 microwave remote sensing Fengyun-3C microwave radiation imager (MWRI) liquid water path (LWP) retrieval
原文传递
A Multivariable Approach for Estimating Soil Moisture from Microwave Radiation Imager(MWRI) 被引量:4
2
作者 Sibo ZHANG Fuzhong WENG Wei YAO 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期732-747,共16页
Accurate measurements of soil moisture are beneficial to our understanding of hydrological processes in the earth system. A multivariable approach using the random forest(RF) machine learning technique is proposed to ... Accurate measurements of soil moisture are beneficial to our understanding of hydrological processes in the earth system. A multivariable approach using the random forest(RF) machine learning technique is proposed to estimate the soil moisture from Microwave Radiation Imager(MWRI) onboard Fengyun-3 C satellite. In this study, Soil Moisture Operational Products System(SMOPS) products disseminated from NOAA are used as a truth to train the algorithm with the input of MWRI brightness temperatures(TBs) at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz, TB polarization ratios(PRs) at 10.65, 18.7, and 23.8 GHz, height in digital elevation model(DEM), and soil porosity. The retrieved soil moisture is also validated against the independent SMOPS data, and the correlation coefficient is about0.8 and mean bias is 0.002 m^3 m^-3 over the period from 1 August 2017 to 31 May 2019. Our retrieval of soil moisture also has a higher correlation with ECMWF ERA5 soil moisture data than the MWRI operational products. In the western part of China, the spatial distribution of MWRI soil moisture is much improved, compared to the MWRI operational products. 展开更多
关键词 soil moisture microwave radiation imager(MWRI) machine learning microwave remote sensing
原文传递
In-Orbit Calibration Uncertainty of the Microwave Radiation Imager on board Fengyun-3C
3
作者 Xinxin XIE Wanting MENG +2 位作者 Jiakai HE Weimin YU Xue LI 《Journal of Meteorological Research》 SCIE CSCD 2021年第6期943-951,共9页
This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3 C(FY-3 C).Uncertainty analysis of the MWRI pr... This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3 C(FY-3 C).Uncertainty analysis of the MWRI provides a direct link to the calibration system of the sensor and quantifies the calibration confidence based on the prelaunch and postlaunch measurements.The unique design of the sensor makes the uncertainty in the calibration of the sensor highly correlate to the uncertainty in the brightness temperature(TB)measured at the hot view,while the cold view has negligible impacts on the calibration confidence.Lack of knowledge on the emission of the hot-load reflector hampers the MWRI calibration accuracy significantly in the descending passes of the orbits when the hotload reflector is heated nonuniformly by the solar illumination.Radiance contamination originating from the satellite and in-orbit environments could enter the primary reflector via the hot view and further impinge on the CU,especially at the 10.65-GHz channels where the main-beam width is much broader than that of higher-frequency channels.The monthly-mean CU is lower than 2 K at all channels,depending on the observed earth scenes and in-orbit environments,and the month-to-month variation of CU is also noticed for all channels.Due to the uncertainty in the emissive hot-load reflector,CU in the descending passes is generally larger than that in the ascending orbits.Moreover,up to 1-K CU difference between the ocean and land scenes is found for the 10.65-GHz channels,while this difference is less than 0.1 K at the 89-GHz channels. 展开更多
关键词 calibration uncertainty(CU) microwave radiation imager(MWRI) Fengyun-3(FY-3)
原文传递
Assessment and Assimilation of FY-3 Humidity Sounders and Imager in the UK Met Office Global Model 被引量:3
4
作者 Fabien CARMINATI Brett CANDY +1 位作者 William BELL Nigel ATKINSON 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第8期46-58,共13页
China's FengYnn 3 (FY-3) polar orbiting satellites axe set to become an important sonrce of observational data for nu- merical weather prediction (NWP), atmospheric reanalyses, and climate monitoring studies over... China's FengYnn 3 (FY-3) polar orbiting satellites axe set to become an important sonrce of observational data for nu- merical weather prediction (NWP), atmospheric reanalyses, and climate monitoring studies over the next two decades. As part of the Climate Science for Service Partnership China (CSSP China) prograln, FY-3B Microwave Humidity Sounder 1 (MWHS-1) and FY-3C MWHS-2 observations have been thoroughly assessed and prepared for operational assimilation. This represents the first time observations from China's polar orbiting satellites have been used in the UK's global NWP model. Since 2016, continuous data quality monitoring has shown occasional bias changes found to be correlated to changes in the energy supply scheme regulating the platform heating system and other transient anomalies. Nonetheless, MWHS-1 and MWHS-2 significantly contribute to the 24-h forecast error reduction by 0.3% and 0.6%, respectively, and the combination of both instruments is shown to improve the fit to the model background of independent sounders by up to 1%. The observations from the Microwave Radiation Imager (MWRI) also are a potentially significant source of benefits for NWP models, but a solar-dependent bias observed in the instrument half-orbits has prevented their assimilation. This paper presents the bases of a correction scheme developed at the Met Office for the purpose of a future assimilation of MWRI data. 展开更多
关键词 microwave Humidity Sounder microwave radiation imager numerical weather prediction
下载PDF
Influences of Earth Incidence Angle on FY-3/MWRI SST Retrieval and Evaluation of Reprocessed SST
5
作者 ZHANG Miao CHEN Lin +1 位作者 XU Na CAO Guang-zhen 《Journal of Tropical Meteorology》 SCIE 2024年第3期230-240,共11页
Sea surface temperature(SST)is a crucial physical parameter in meteorology and oceanography.This study demonstrates that the influence of earth incidence angle(EIA)on the SST retrieved from the microwave radiation ima... Sea surface temperature(SST)is a crucial physical parameter in meteorology and oceanography.This study demonstrates that the influence of earth incidence angle(EIA)on the SST retrieved from the microwave radiation imager(MWRI)onboard FengYun-3(FY-3)meteorological satellites should not be ignored.Compared with algorithms that do not consider the influence of EIA in the regression,those that integrate the EIA into the regression can enhance the accuracy of SST retrievals.Subsequently,based on the recalibrated Level 1B data from the FY-3/MWRI,a long-term SST dataset was reprocessed by employing the algorithm that integrates the EIA into the regression.The reprocessed SST data,including FY-3B/MWRI SST during 2010-2019,FY-3C/MWRI SST during 2013-2019,and FY-3D/MWRI SST during 2018-2020,were compared with the in-situ SST and the SST dataset from the Operational Sea Surface Temperature and Ice Analysis(OSTIA).The results show that the FY-3/MWRI SST data were consistent with both the in-situ SST and the OSTIA SST dataset.Compared with the Copernicus Climate Change Service V2.0 SST,the absolute deviation of the reprocessed SST,with a quality flag of 50,was less than 1.5℃.The root mean square errors of the FY-3/MWRI orbital,daily,and monthly SSTs,with a quality flag of 50,were approximately 0.82℃,0.69℃,and 0.37℃,respectively.The primary discrepancies between the FY-3/MWRI SST and the OSTIA SST were found mainly in the regions of the western boundary current and the Antarctic Circumpolar Current.Overall,this reprocessed SST product is recommended for El Niño and La Niña events monitoring. 展开更多
关键词 FengYun-3 satellites sea surface temperature microwave radiation imager earth incidence angle REPROCESSING
下载PDF
基于FY-3B/MWRI数据的青藏高原地区积雪深度反演 被引量:2
6
作者 高凇 吴莹 钱博 《地球物理学进展》 CSCD 北大核心 2020年第2期399-405,共7页
以青藏高原地区(25°N-40°N,70°E-105°E)为研究区域,基于积雪深度与微波辐射计18.7 GHz水平极化通道和36.5 GHz水平极化通道的亮温差(Tb18H-Tb36H)具有良好的线性相关性,得出了适用于FY-3B/MWRI(Microwave Radiation... 以青藏高原地区(25°N-40°N,70°E-105°E)为研究区域,基于积雪深度与微波辐射计18.7 GHz水平极化通道和36.5 GHz水平极化通道的亮温差(Tb18H-Tb36H)具有良好的线性相关性,得出了适用于FY-3B/MWRI(Microwave Radiation Imager)亮温数据反演青藏高原地区雪深的新算法.利用FY-3B/MWRI一级亮温数据,通过新的半经验算法反演了青藏高原地区的积雪深度,进而运用AMSR2(the Advanced Microwave Scanning Radiometer 2)的二级雪深产品验证了反演结果.结果表明:针对青藏高原地区,新算法相对于全球积雪深度算法具有更小的平均相对误差以及更小的均方根误差,在该研究区域具有更好的适用性.今后可以结合该地区的地表类型分类,对积雪深度反演算法进行更加细致化的拟合,以期提高反演精度,为青藏高原地球物理参数的遥感反演提供支持. 展开更多
关键词 MWRI(microwave radiation imager) 积雪深度 青藏高原
原文传递
Impact of FY-3D MWRI Radiance Assimilation in GRAPES 4DVar on Forecasts of Typhoon Shanshan 被引量:4
7
作者 Hongyi XIAO Wei HAN +3 位作者 Hao WANG Jincheng WANG Guiqing LIU Changshan XU 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期836-850,共15页
In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) sy... In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3 C MWRI, the bias of FY-3 D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan. 展开更多
关键词 Fengyun-3D(FY-3D) microwave radiation imager(MWRI) Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4DVar) typhoon forecast
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部