The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity un...The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity under empty and loaded states over the frequency range from 2.448 GHz to 2.468 GHz. In the hot test, a piece of wet thermal paper and an infrared thermal imaging camera are used to measure the electric field distributions on the mica and turntable. In the cold test, the simulation agrees well with the experiment no matter in empty state or loaded state. In the hot test, the simulation agrees well with the experiment in general in empty state and approximately in loaded state. The little difference in both cold and hot test may be due to that the model in simulation is not absolutely identical with that in experiment or the inadequate precision of infrared thermal imaging camera.展开更多
The moisture content of yarn and fabric is an important factor in textiles industry.A novel microwave method used for material moisture content measurements is described in this paper.It can estimate the moisture cont...The moisture content of yarn and fabric is an important factor in textiles industry.A novel microwave method used for material moisture content measurements is described in this paper.It can estimate the moisture content of the yarn roll with a standard deviation of 1.58% in the range of 0% to 90.00%.According to the actual size of the yarn,the yarn roll simulation model is established.The microwave attenuation variations arising from the changes in the conductivity and dielectric constant of the wet cone yarn from1.8 GHz to 5.0 GHz frequency are obtained by ultra-wideband antenna.The measured data are analyzed using the BP neural network.The result shows that it is a non-contact and online method to solve the moisture content of the yarn in the wide moisture content range.展开更多
Earth observation technologies are important for obtaining geospatial information on the Earth’s surface and are used widely in many disciplines,such as resource surveying,environmental monitoring,and evolutionary st...Earth observation technologies are important for obtaining geospatial information on the Earth’s surface and are used widely in many disciplines,such as resource surveying,environmental monitoring,and evolutionary studies.However,it is a challenge for existing Earth observation platforms to acquire this type of data rapidly on a global scale due to limitations in orbital altitude and field of view;thus development of an advanced platform for Earth observation is desirable.As a natural satellite of the Earth,placement of various sensors on the Moon could possibly facilitate comprehensive,continuous,and longterm observations of the Earth.This is a relatively new concept and the study is still at the preliminary stage with no actual Moon-based Earth observation data available at this time.To understand the characteristics of Moon-based microwave radiation,several physical factors that potentially influence microwave radiation imaging,e.g.,time zone correction,relative movement of the Earth-Moon,atmospheric radiative transfer,and the effect of the ionosphere,were examined.Based on comprehensive analysis of these factors,the Moon-based microwave brightness temperature images were simulated using spaceborne temperature data.The results show that time zone correction ensures that the simulation images may be obtained at Coordinated Universal Time(UTC)and that the relative movement of the Earth-Moon affects the positions of the nadir and Moon-based imaging.The effect of the atmosphere on Moon-based observation is dependent on various parameters,such as atmospheric pressure,temperature,humidity,water vapor,carbon dioxide,oxygen,the viewing zenith angle and microwave frequency.These factors have an effect on atmospheric transmittance and propagation of upward and downward radiation.When microwaves propagate through the ionosphere,the attenuation is related to frequency and viewing zenith angle.Based on initial studies,the simulation results suggest Moon-based microwave radiation imaging is realistic and viable.展开更多
Computational simulation of the radiating structure of a microwave from a pyramidal horn has been successfully accomplished.This simulation capability is de-veloped for plasma diagnostics based on a combination of thr...Computational simulation of the radiating structure of a microwave from a pyramidal horn has been successfully accomplished.This simulation capability is de-veloped for plasma diagnostics based on a combination of three-dimensional Maxwell equations in the time domain and the generalized Ohm’s law.The transverse electrical electromagnetic wave of the TE1,0 mode propagating through a plasma medium and transmitting from antenna is simulated by solving these governing equations.Numerical results were obtained for a range of plasma transport properties including electrical con-ductivity,permittivity,and plasma frequency.As a guided microwave passing through plasma of finite thickness,the reflections at the media interfaces exhibit substantial distortion of the electromagnetic field within the thin sheet.In radiating simulation,the edge diffraction at the antenna aperture is consistently captured by numerical so-lutions and reveals significant perturbation to the emitting microwave.The numerical solution reaffirms the observation that the depth of the plasma is a critical parameter for diagnostics measurement.展开更多
One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation ...One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.10775029Vacuum Electronics National Laboratory Foundation under Grant No. NKLC001-063Postdoctoral Foundation under Grant No.20070411149
文摘The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity under empty and loaded states over the frequency range from 2.448 GHz to 2.468 GHz. In the hot test, a piece of wet thermal paper and an infrared thermal imaging camera are used to measure the electric field distributions on the mica and turntable. In the cold test, the simulation agrees well with the experiment no matter in empty state or loaded state. In the hot test, the simulation agrees well with the experiment in general in empty state and approximately in loaded state. The little difference in both cold and hot test may be due to that the model in simulation is not absolutely identical with that in experiment or the inadequate precision of infrared thermal imaging camera.
基金The Science&Technology Innovation Action Plan of International Science and Technology Cooperation Projects from SSTEC(No.14510711600)
文摘The moisture content of yarn and fabric is an important factor in textiles industry.A novel microwave method used for material moisture content measurements is described in this paper.It can estimate the moisture content of the yarn roll with a standard deviation of 1.58% in the range of 0% to 90.00%.According to the actual size of the yarn,the yarn roll simulation model is established.The microwave attenuation variations arising from the changes in the conductivity and dielectric constant of the wet cone yarn from1.8 GHz to 5.0 GHz frequency are obtained by ultra-wideband antenna.The measured data are analyzed using the BP neural network.The result shows that it is a non-contact and online method to solve the moisture content of the yarn in the wide moisture content range.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41590855)the Key Research Project in Frontier Science of the Chinese Academy of Sciences(No.QYZDY-SSW-DQC026).
文摘Earth observation technologies are important for obtaining geospatial information on the Earth’s surface and are used widely in many disciplines,such as resource surveying,environmental monitoring,and evolutionary studies.However,it is a challenge for existing Earth observation platforms to acquire this type of data rapidly on a global scale due to limitations in orbital altitude and field of view;thus development of an advanced platform for Earth observation is desirable.As a natural satellite of the Earth,placement of various sensors on the Moon could possibly facilitate comprehensive,continuous,and longterm observations of the Earth.This is a relatively new concept and the study is still at the preliminary stage with no actual Moon-based Earth observation data available at this time.To understand the characteristics of Moon-based microwave radiation,several physical factors that potentially influence microwave radiation imaging,e.g.,time zone correction,relative movement of the Earth-Moon,atmospheric radiative transfer,and the effect of the ionosphere,were examined.Based on comprehensive analysis of these factors,the Moon-based microwave brightness temperature images were simulated using spaceborne temperature data.The results show that time zone correction ensures that the simulation images may be obtained at Coordinated Universal Time(UTC)and that the relative movement of the Earth-Moon affects the positions of the nadir and Moon-based imaging.The effect of the atmosphere on Moon-based observation is dependent on various parameters,such as atmospheric pressure,temperature,humidity,water vapor,carbon dioxide,oxygen,the viewing zenith angle and microwave frequency.These factors have an effect on atmospheric transmittance and propagation of upward and downward radiation.When microwaves propagate through the ionosphere,the attenuation is related to frequency and viewing zenith angle.Based on initial studies,the simulation results suggest Moon-based microwave radiation imaging is realistic and viable.
文摘Computational simulation of the radiating structure of a microwave from a pyramidal horn has been successfully accomplished.This simulation capability is de-veloped for plasma diagnostics based on a combination of three-dimensional Maxwell equations in the time domain and the generalized Ohm’s law.The transverse electrical electromagnetic wave of the TE1,0 mode propagating through a plasma medium and transmitting from antenna is simulated by solving these governing equations.Numerical results were obtained for a range of plasma transport properties including electrical con-ductivity,permittivity,and plasma frequency.As a guided microwave passing through plasma of finite thickness,the reflections at the media interfaces exhibit substantial distortion of the electromagnetic field within the thin sheet.In radiating simulation,the edge diffraction at the antenna aperture is consistently captured by numerical so-lutions and reveals significant perturbation to the emitting microwave.The numerical solution reaffirms the observation that the depth of the plasma is a critical parameter for diagnostics measurement.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371332 & 41590851)the Fundamental Research Funds for the Central Universities (Grant No. JCKY-QKJC23)the Science and Technology Development Fund of Macao (Grant No. 110/2014/A3)
文摘One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.