The ethoxycarbonyl isothiocyanate has been investigated by using supersonic jet Fourier transform microwave spectroscopy.Two sets of rotational spectra belonging to conformers TCC(with the backbone of C-C-O-C,C-O-C=O,...The ethoxycarbonyl isothiocyanate has been investigated by using supersonic jet Fourier transform microwave spectroscopy.Two sets of rotational spectra belonging to conformers TCC(with the backbone of C-C-O-C,C-O-C=O,and O-C(=O)-NCS being trans,cis,and cis arranged,respectively)and GCC(gauche,cis,and cis arrangement of the C-C-O-C,C-O-C=O,and O-C(=O)-NCS)have been measured and assigned.The measurements of13C,15N and34S mono-substituted species of the two conformers have also been performed.The comprehensive rotational spectroscopic investigations provide accurate values of rotational constants and14N quadrupole coupling constants,which lead to structural determinations of the two conformers of ethoxycarbonyl isothiocyanate.For conformer TCC,the values of Pcckeep constant upon isotopic substitution,indicating that the heavy atoms of TCC are effectively located in the ab plane.展开更多
The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of freq...The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.展开更多
The determination of copper by MIP-AES was investigated in detail. Aqueous samples were introduced from an ultrasonic nebulizer and the solvent was removed by a desolvation device before introduction of the aerosol in...The determination of copper by MIP-AES was investigated in detail. Aqueous samples were introduced from an ultrasonic nebulizer and the solvent was removed by a desolvation device before introduction of the aerosol into the MIP. The desolvation system consisted of a condenser associated with a concentrated H2SO4 absorption cell. Various experimental conditions and interferences from easily ionised elements (EIEs) were also studied and some practical samples were analyzed.展开更多
The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. ...The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. The results for Mossbauer analyses show that the considerable amount of pyrrhotite produced during microwave irradiation, carrying with it some of non--magnetic pyrite (unconverted), ferrous sulfate, and troilite, is completely removed from coal after magnetic separation. The opthoum desulfurization efficiency can be attsined by appropriately controlling the irradiation time to maximize the amount of pyrrhotite formed pyrite decomposition.Excessive irradiation would be disadvantageous for improving magnetic separation due to the further decomposition of pyrrhotite to antiferromagnetic troilite.展开更多
Studying Rydberg microwave frequency comb(MFC)spectroscopy helps increase the working bandwidth of the Rydberg receiver.This Letter demonstrates off-resonant Rydberg MFC spectroscopy in a meta-waveguide-coupled Rydber...Studying Rydberg microwave frequency comb(MFC)spectroscopy helps increase the working bandwidth of the Rydberg receiver.This Letter demonstrates off-resonant Rydberg MFC spectroscopy in a meta-waveguide-coupled Rydberg atomic system.An off-resonant MFC field couples with the Rydberg atoms through a meta-waveguide.The system can receive the microwave field in the working band from 0.5 GHz to 13.5 GHz,and the MFC spectroscopy covers a span of 36 MHz at three different arbitrarily-chosen frequencies of 2 GHz,3 GHz,and 5.8 GHz.The MFC spectrum that covers a wide range of 125 MHz is also verified.This work is significant for tunable wide-band instant microwave signal detection in the Rydberg atomic system,which is useful in microwave frequency metrology,communication,and radar.展开更多
基金The support from the National Natural Science Foundation of China(No.22273009)Chongqing University。
文摘The ethoxycarbonyl isothiocyanate has been investigated by using supersonic jet Fourier transform microwave spectroscopy.Two sets of rotational spectra belonging to conformers TCC(with the backbone of C-C-O-C,C-O-C=O,and O-C(=O)-NCS being trans,cis,and cis arranged,respectively)and GCC(gauche,cis,and cis arrangement of the C-C-O-C,C-O-C=O,and O-C(=O)-NCS)have been measured and assigned.The measurements of13C,15N and34S mono-substituted species of the two conformers have also been performed.The comprehensive rotational spectroscopic investigations provide accurate values of rotational constants and14N quadrupole coupling constants,which lead to structural determinations of the two conformers of ethoxycarbonyl isothiocyanate.For conformer TCC,the values of Pcckeep constant upon isotopic substitution,indicating that the heavy atoms of TCC are effectively located in the ab plane.
文摘The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.
基金Supported by the Natinoal Natural Science Foundation of China.
文摘The determination of copper by MIP-AES was investigated in detail. Aqueous samples were introduced from an ultrasonic nebulizer and the solvent was removed by a desolvation device before introduction of the aerosol into the MIP. The desolvation system consisted of a condenser associated with a concentrated H2SO4 absorption cell. Various experimental conditions and interferences from easily ionised elements (EIEs) were also studied and some practical samples were analyzed.
文摘The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. The results for Mossbauer analyses show that the considerable amount of pyrrhotite produced during microwave irradiation, carrying with it some of non--magnetic pyrite (unconverted), ferrous sulfate, and troilite, is completely removed from coal after magnetic separation. The opthoum desulfurization efficiency can be attsined by appropriately controlling the irradiation time to maximize the amount of pyrrhotite formed pyrite decomposition.Excessive irradiation would be disadvantageous for improving magnetic separation due to the further decomposition of pyrrhotite to antiferromagnetic troilite.
基金supported by the National Key R&D Program of China(No.2022YFA1404002)the National Natural Science Foundation of China(Nos.U20A20218,61525504,and 61435011)+1 种基金the Anhui Initiative in Quantum Information Technologies(No.AHY020200)the Major Science and Technology Projects in Anhui Province(No.202203a13010001).
文摘Studying Rydberg microwave frequency comb(MFC)spectroscopy helps increase the working bandwidth of the Rydberg receiver.This Letter demonstrates off-resonant Rydberg MFC spectroscopy in a meta-waveguide-coupled Rydberg atomic system.An off-resonant MFC field couples with the Rydberg atoms through a meta-waveguide.The system can receive the microwave field in the working band from 0.5 GHz to 13.5 GHz,and the MFC spectroscopy covers a span of 36 MHz at three different arbitrarily-chosen frequencies of 2 GHz,3 GHz,and 5.8 GHz.The MFC spectrum that covers a wide range of 125 MHz is also verified.This work is significant for tunable wide-band instant microwave signal detection in the Rydberg atomic system,which is useful in microwave frequency metrology,communication,and radar.