Plasma photonic crystals(PPCs)are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave.Here we demonstrate several one-dimensional(1 D)PPCs with uniquely ...Plasma photonic crystals(PPCs)are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave.Here we demonstrate several one-dimensional(1 D)PPCs with uniquely designed superlattice structures,annular structures or with incorporation of the third material into the primitive unit cell.The influences of the properties of the third material as well as the structural configurations of suplerlattices on the transmittance characteristics of PPCs have been investigated by use of the finite element method.The optimal design strategy for producing PPCs that have more and larger band gaps is provided.These new schemes can potentially be extended to 2 D or 3 D plasma crystals,which may find broad applications in the manipulation of microwaves and terahertz waves.展开更多
基金supported by National Natural Science Foundation of China(No.11875014)the Natural Science Foundation of Hebei Province(A2017201099)。
文摘Plasma photonic crystals(PPCs)are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave.Here we demonstrate several one-dimensional(1 D)PPCs with uniquely designed superlattice structures,annular structures or with incorporation of the third material into the primitive unit cell.The influences of the properties of the third material as well as the structural configurations of suplerlattices on the transmittance characteristics of PPCs have been investigated by use of the finite element method.The optimal design strategy for producing PPCs that have more and larger band gaps is provided.These new schemes can potentially be extended to 2 D or 3 D plasma crystals,which may find broad applications in the manipulation of microwaves and terahertz waves.