Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha...Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.展开更多
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo...Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol...Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.展开更多
探究秦川牛宰后成熟过程中线粒体Tu翻译延长因子(mitochondrial Tu translation elongation factor,TUFM)表达对肉的持水性影响。以秦川牛背最长肌为研究对象,测定4℃不同成熟时间下的pH值、贮藏损失、离心损失、蒸煮损失、水分分布、...探究秦川牛宰后成熟过程中线粒体Tu翻译延长因子(mitochondrial Tu translation elongation factor,TUFM)表达对肉的持水性影响。以秦川牛背最长肌为研究对象,测定4℃不同成熟时间下的pH值、贮藏损失、离心损失、蒸煮损失、水分分布、肌原纤维蛋白等指标变化情况,测定不同成熟时间(0、96、192 h)下TUFM表达量及其含量、Beclin1蛋白表达量。结果显示:在秦川牛宰后成熟期间,肌原纤维蛋白发生降解,TUFM的表达量与Beclin1蛋白表达量和牛肉的持水性存在密切关系,其中蛋白质组学测定的TUFM表达量变化与TUFM含量变化趋势一致,Beclin1蛋白表达量、贮藏损失、离心损失、蒸煮损失整体均呈先上升后下降趋势,pH值呈先下降后上升趋势;Pearson相关性分析表明,牛背最长肌中TUFM表达量与低场核磁共振峰面积比P_(2b)、Beclin1蛋白表达量呈极显著正相关(P<0.01),与贮藏损失、离心损失、蒸煮损失呈显著正相关(P<0.05),与P_(21)呈极显著负相关(P<0.01),与P_(22)呈显著负相关(P<0.05),与pH值无显著相关性(P>0.05)。通过蛋白质组学鉴定出23种与TUFM相关的差异蛋白,通过基因本体论、京都基因与基因组百科全书通路分析发现,差异蛋白可通过多种途径参与能量代谢,进而介导细胞自噬;对差异蛋白和持水性指标进行Pearson相关性分析发现,有5种差异蛋白(ATP5F1D、EEF1A2、GSPT1、NDUFB5、SUCLG1)与持水性指标具有显著相关性(P<0.05、P<0.01)。分析可知,包括TUFM在内,共6种蛋白主要通过能量代谢和氧转运等途径正向或负向影响细胞自噬,从而影响肉的持水性。展开更多
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ...The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.展开更多
We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a ...We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters.Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
In this study the effects of microwaves on the secondary structure of three typical proteins have been investigated. A set of samples of lysozyme, bovine serum albumin and myoglobin in D2O solutions were exposed for 8...In this study the effects of microwaves on the secondary structure of three typical proteins have been investigated. A set of samples of lysozyme, bovine serum albumin and myoglobin in D2O solutions were exposed for 8 hours to mobile phone microwaves at 900 MHz at a magnetic field intensity around 16 mA/m. The relative effects on the secondary structure of the proteins were studied by means of Fourier Transform Infrared Spectroscopy. An increase of the amide I band intensity in the secondary structure of the proteins was observed after the microwaves exposure. Furthermore, a weak shift of the amide I mode of bovine serum albumin and a heavier shift of the amide I of myoglobin occurred after the exposure. In addition, a clear increasing of the β-sheet components with respect to the α-helix content was observed in the spectra of bovine serum albumin and myoglobin after the exposure, suggesting the hypothesis of the formation of aggregates.展开更多
In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.I...In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.展开更多
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F...Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.展开更多
Microwave thermotherapy(MWTT),as a treatment for tumors,lacks specificity and requires sensitizers.Most reported microwave sensitizers are single metal-organic frameworks(MOFs),which must be loaded with ionic liquids ...Microwave thermotherapy(MWTT),as a treatment for tumors,lacks specificity and requires sensitizers.Most reported microwave sensitizers are single metal-organic frameworks(MOFs),which must be loaded with ionic liquids to enhance the performance in MWTT.Meanwhile,MWTT is rarely combined with other treatment modalities.Here,we synthesized a novel FeeCu bimetallic organic framework FeCuMOF(FCM)by applying a hydrothermal method and further modified it with methyl polyethylene glycol(mPEG).The obtained FCM@PEG(FCMP)showed remarkable heating performance under lowpower microwave irradiation;it also acted as a novel nanospheres enzyme to catalyze H_(2)O_(2) decomposition,producing abundant reactive oxygen species(ROS)to deplete glutathione(GSH)and prevent ROS clearance from tumor cells during chemodynamic treatment.The FCMP was biodegradable and demonstrated excellent biocompatibility,allowing it to be readily metabolized without causing toxic effects.Finally,it was shown to act as a suitable agent for T2 magnetic resonance imaging(MRI)in vitro and in vivo.This new bimetallic nanostructure could successfully realize two tumor treatment modalities(MWTT and chemodynamic therapy)and dual imaging modes(T2 MRI and microwave thermal imaging).Our findings represent a breakthrough for integrating the diagnosis and treatment of tumors and provides a reference for developing new microwave sensitizers。展开更多
In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, ...In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, and industrial and agricultural sources are the main sources of organic waste in China, which can be controlled by microwave pyrolysis technology. In microwave pyrolysis treatment, catalysts have been the key material, microwave absorber, and catalyst of the research hotspot in recent years. This paper summarises the typical influencing parameters of microwave pyrolysis (including microwave power, pyrolysis temperature and microwave absorber), and also summarises the various catalysts applied in microwave pyrolysis, and looks forward to the potential application prospect of pyrolysis products, and the future development direction.展开更多
A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this stud...A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.展开更多
Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approa...Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approaches to integrated design.Herein,a multi-layer impedance gradient honeycomb(MIGH)was designed through theoretical analysis and simulation calculation,and fabricated using 3D printing technique.A theoretical calculation strategy for impedance gradient structure was established based on the electromagnetic parameter equivalent method and the multi-layer finite iterative method.The impedance of MIGH was analyzed by the theoretical calculation strategy to resolve the broadband absorption.Intrinsic loss mechanism of matrix materials and distributions of electric fields,magnetic fields and power loss were analyzed to investigate the absorption mechanism.Experimental results indicated that a 15 mm thick designed metastructure can achieve the absorption more than 88.9%in the frequency range of 2-18 GHz.Moreover,equivalent mechanical parameters of MIGH was calculated by integral method according to the Y-shaped model.Finite Element analysis of stress distributions were carried out to predict the deformation behavior.Mechanical tests demonstrate that MIGH achieved the compression modulus of 22.89 MPa and flexure modulus of 17.05 MPa.The integration of broadband electromagnetic absorption and effective mechanical resistance was achieved by the proposed design principle and fabrication methodology.展开更多
This study develops low-fat microwaved peanut snacks(LMPS)using partially defatted peanuts(PDP)with different defatting ratios,catering to people’s pursuit of healthy,low-fat cuisine.The effects of defatting treatmen...This study develops low-fat microwaved peanut snacks(LMPS)using partially defatted peanuts(PDP)with different defatting ratios,catering to people’s pursuit of healthy,low-fat cuisine.The effects of defatting treatment on the structural characteristics,texture,color,and nutrient composition of LMPS were comprehensively explored.The structural characteristics of LMPS were characterized using X-ray micro-computed tomography(Micro-CT)and scanning electron microscope(SEM).The results demonstrated that the porosity,pore number,pore volume,brightness,brittleness,protein content,and total sugar content of LMPS all significantly increased(P<0.05)with the increase in the defatting ratio.At the micro level,porous structure,cell wall rupture,and loss of intracellular material could be observed in LMPS after defatting treatments.LMPS made from PDP with a defatting ratio of 64.44%had the highest internal pore structural parameters(porosity 59%,pore number 85.3×10^(5),pore volume 68.23 mm3),the brightest color(L^(*) 78.39±0.39),the best brittleness(3.64±0.21)mm^(–1)),and the best nutrition(high protein content,(34.02±0.38)%;high total sugar content,(17.45±0.59)%;low-fat content,(27.58±0.85)%).The study provides a theoretical basis for the quality improvement of LMPS.展开更多
Two-dimensional(2D)transition metal chalcogenides(TMCs)hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties.However,overcoming the imp...Two-dimensional(2D)transition metal chalcogenides(TMCs)hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties.However,overcoming the impedance mismatch at the low loading is still a challenge for TMCs due to the restricted loss pathways caused by their high-density characteristic.Here,an interface engineering based on the heterostructure of 2D Cr_(5)Te_(8) and graphite is in situ constructed via a one-step chemical vapor deposit to modulate impedance matching and introduce multiple attenuation mechanisms.Intriguingly,the Cr_(5)Te_(8)@EG(ECT)heterostructure exhibits a minimum reflection loss of up to−57.6 dB at 15.4 GHz with a thin thickness of only 1.4 mm under a low filling rate of 10%.The density functional theory calculations confirm that the splendid performance of ECT heterostructure primarily derives from charge redistribution at the abundant intimate interfaces,thereby reinforcing interfacial polarization loss.Furthermore,the ECT coating displays a remarkable radar cross section reduction of 31.9 dB m^(2),demonstrating a great radar microwave scattering ability.This work sheds light on the interfacial coupled stimulus response mechanism of TMC-based heterogeneous structures and provides a feasible strategy to manipulate high-quality TMCs for excellent microwave absorbers.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>−11</sup> m<sup>3</sup>∙kg<sup>−1</sup>∙s<sup>−2</sup>, respectively. Every equation could be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and a. Furthermore, every equation could also be explained in terms of Avogadro’s number and the number of electrons in 1 C. However, the ratio of the gravitational force to the electric force cannot be uniquely determined when the unit of the Planck constant (Js) is changed. In this study, we showed that every equation can be described in terms of Planck constant. From the assumption of minimum mass, the ratio of gravitational force to electric force could be elucidated.展开更多
Liver transplantation(LT)remains the treatment of choice for early-stage hepato-cellular carcinoma(HCC)and offers the best long-term oncological outcomes.However,the increasing waiting list for LT has led to a signifi...Liver transplantation(LT)remains the treatment of choice for early-stage hepato-cellular carcinoma(HCC)and offers the best long-term oncological outcomes.However,the increasing waiting list for LT has led to a significant dropout rate as patients experience tumor progression beyond the Milan criteria.Currently,locoregional therapies,such as microwave ablation(MWA),have emerged as promising bridge treatments for patients awaiting LT.These therapies have shown promising results in preventing tumor progression,thus reducing the dropout rate of LT candidates.Despite the efficacy of MWA in treating HCC,tumoral recurrence after ablation remains a major challenge and significantly impacts the prognosis of HCC patients.Therefore,accurately diagnosing tumoral recurrence post-ablation is crucial.Recent studies have developed novel imaging features based on magnetic resonance imaging of HCC,which could provide essential information for predicting early tumoral recurrence after MWA.These advancements could address this unresolved challenge,improving the clinical outcomes of patients on the LT waiting list.This article explored the current landscape of MWA as a bridge therapy for HCC within the Milan criteria,high-lighting the emerging role of novel imaging-based features aimed at improving the prediction of tumor recurrence after MWA.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature that were mathematically connected. Next, we proposed an empirical equation for the fine-structure constant....Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature that were mathematically connected. Next, we proposed an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>-11</sup> m<sup>3</sup>·kg<sup>-1</sup>·s<sup>-2</sup>, respectively. Every equation can be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and α. However, these equations are difficult to follow. Using the correspondence principle with the thermodynamic principles in solid-state ionics, we propose a canonical ensemble to explain these equations in this report. For this purpose, we show that every equation can be explained in terms of Avogadro’s number and the number of electrons in 1 C.展开更多
基金supported by the National Natural Science Foundation of China(No.52373280,52177014,51977009,52273257)。
文摘Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
基金financial support from the National Nature Science Foundation of China(No.52273247)the National Science and Technology Major Project of China(J2019-VI-0017-0132).
文摘Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金financial support from National Key R&D Program of China(MoST,2020YFA0711500)the National Natural Science Foundation of China(NSFC,21875114),(NSFC,52303348)+1 种基金111 Project(B18030)“The Fundamental Research Funds for the Central Universities”,Nankai University.
文摘Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
基金financial support from the National Natural Science Foundation of China (52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing (STRZ202203)the financial support provided by the China Scholarship Council (CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship,Australia。
文摘The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.
基金partly supported by the National Natural Science Foundation of China (Grant Nos.12074179 and U21A20436)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0301702)+2 种基金the Natural Science Foundation of Jiangsu Province,China (Grant Nos.BE2021015-1 and BK20232002)the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No.20220ZB16)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2023LZH002)。
文摘We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters.Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
文摘In this study the effects of microwaves on the secondary structure of three typical proteins have been investigated. A set of samples of lysozyme, bovine serum albumin and myoglobin in D2O solutions were exposed for 8 hours to mobile phone microwaves at 900 MHz at a magnetic field intensity around 16 mA/m. The relative effects on the secondary structure of the proteins were studied by means of Fourier Transform Infrared Spectroscopy. An increase of the amide I band intensity in the secondary structure of the proteins was observed after the microwaves exposure. Furthermore, a weak shift of the amide I mode of bovine serum albumin and a heavier shift of the amide I of myoglobin occurred after the exposure. In addition, a clear increasing of the β-sheet components with respect to the α-helix content was observed in the spectra of bovine serum albumin and myoglobin after the exposure, suggesting the hypothesis of the formation of aggregates.
基金supported by the National Natural Science Foundation of China(42272202 and 52264001)the Yunnan Fundamental Research Projects(202201AT070144)+1 种基金the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWRQNBJ-2019-164)Training Programmes of Innovation and Entrepreneurship for Undergraduates of Yunnan Province(S202210674128).
文摘In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.
基金supported by the National Natural Science Foundation of China(Nos.51879184 and 12172253).
文摘Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.
基金supported by the National Key R&D Program of China(Grant No.:2018YFC0115500)the National Natural Science Foundation of China(Grant No.:U21A20378)+2 种基金Liaoning Revitalization Talents Program,China(Grant No.:XLYC1802098)the Natural Science Foundation of Shaanxi Provincical Department of Education,China(Grant No.:21JK0593)the Key Research and Development Plan of Science and Technology Department of Xianyang City,China(Grant No.:L2023-ZDYF-SF-054).
文摘Microwave thermotherapy(MWTT),as a treatment for tumors,lacks specificity and requires sensitizers.Most reported microwave sensitizers are single metal-organic frameworks(MOFs),which must be loaded with ionic liquids to enhance the performance in MWTT.Meanwhile,MWTT is rarely combined with other treatment modalities.Here,we synthesized a novel FeeCu bimetallic organic framework FeCuMOF(FCM)by applying a hydrothermal method and further modified it with methyl polyethylene glycol(mPEG).The obtained FCM@PEG(FCMP)showed remarkable heating performance under lowpower microwave irradiation;it also acted as a novel nanospheres enzyme to catalyze H_(2)O_(2) decomposition,producing abundant reactive oxygen species(ROS)to deplete glutathione(GSH)and prevent ROS clearance from tumor cells during chemodynamic treatment.The FCMP was biodegradable and demonstrated excellent biocompatibility,allowing it to be readily metabolized without causing toxic effects.Finally,it was shown to act as a suitable agent for T2 magnetic resonance imaging(MRI)in vitro and in vivo.This new bimetallic nanostructure could successfully realize two tumor treatment modalities(MWTT and chemodynamic therapy)and dual imaging modes(T2 MRI and microwave thermal imaging).Our findings represent a breakthrough for integrating the diagnosis and treatment of tumors and provides a reference for developing new microwave sensitizers。
文摘In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, and industrial and agricultural sources are the main sources of organic waste in China, which can be controlled by microwave pyrolysis technology. In microwave pyrolysis treatment, catalysts have been the key material, microwave absorber, and catalyst of the research hotspot in recent years. This paper summarises the typical influencing parameters of microwave pyrolysis (including microwave power, pyrolysis temperature and microwave absorber), and also summarises the various catalysts applied in microwave pyrolysis, and looks forward to the potential application prospect of pyrolysis products, and the future development direction.
基金This study is supported by the National Key Research and Development Program of China(No.2022YFB2807405)the Qinchuangyuan Citing High-level Innovation and Entrepreneurship Talent Projects(No.QCYRCXM-2022-40)+2 种基金the National Natural Science Foundation of China(Nos.U2341263 and 62371366)Open project of Yunnan Precious Metals Laboratory Co.,Ltd(No.YPML-2023050246)Innovation Capability Support Program of Shaanxi,China(Nos.2023-CX-PT-30 and 2022TD-28).
文摘A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.
基金supported by the National Natural Science Foundation of China(Grant No.62201352)。
文摘Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approaches to integrated design.Herein,a multi-layer impedance gradient honeycomb(MIGH)was designed through theoretical analysis and simulation calculation,and fabricated using 3D printing technique.A theoretical calculation strategy for impedance gradient structure was established based on the electromagnetic parameter equivalent method and the multi-layer finite iterative method.The impedance of MIGH was analyzed by the theoretical calculation strategy to resolve the broadband absorption.Intrinsic loss mechanism of matrix materials and distributions of electric fields,magnetic fields and power loss were analyzed to investigate the absorption mechanism.Experimental results indicated that a 15 mm thick designed metastructure can achieve the absorption more than 88.9%in the frequency range of 2-18 GHz.Moreover,equivalent mechanical parameters of MIGH was calculated by integral method according to the Y-shaped model.Finite Element analysis of stress distributions were carried out to predict the deformation behavior.Mechanical tests demonstrate that MIGH achieved the compression modulus of 22.89 MPa and flexure modulus of 17.05 MPa.The integration of broadband electromagnetic absorption and effective mechanical resistance was achieved by the proposed design principle and fabrication methodology.
基金funded by the National Natural Science Foundation of China(NSFC,U21A20270)the Key R&D Program of Shandong Province,China(2023TZXD074)+2 种基金the Bingtuan Science and Technology Program,China(2023AB002)the National Peanut Industry Technology System of China(CARS-13-08B)the National Key R&D Program of China(2021YFD2100402)。
文摘This study develops low-fat microwaved peanut snacks(LMPS)using partially defatted peanuts(PDP)with different defatting ratios,catering to people’s pursuit of healthy,low-fat cuisine.The effects of defatting treatment on the structural characteristics,texture,color,and nutrient composition of LMPS were comprehensively explored.The structural characteristics of LMPS were characterized using X-ray micro-computed tomography(Micro-CT)and scanning electron microscope(SEM).The results demonstrated that the porosity,pore number,pore volume,brightness,brittleness,protein content,and total sugar content of LMPS all significantly increased(P<0.05)with the increase in the defatting ratio.At the micro level,porous structure,cell wall rupture,and loss of intracellular material could be observed in LMPS after defatting treatments.LMPS made from PDP with a defatting ratio of 64.44%had the highest internal pore structural parameters(porosity 59%,pore number 85.3×10^(5),pore volume 68.23 mm3),the brightest color(L^(*) 78.39±0.39),the best brittleness(3.64±0.21)mm^(–1)),and the best nutrition(high protein content,(34.02±0.38)%;high total sugar content,(17.45±0.59)%;low-fat content,(27.58±0.85)%).The study provides a theoretical basis for the quality improvement of LMPS.
基金the National Natural Science Foundation of China(grant No.62174013,92265111)Central Government Guides Local Funds for Science and Technology Development(No.YDZJSX2022A021)the funding Program of BIT(grant No.3180012212214 and 3180023012204).
文摘Two-dimensional(2D)transition metal chalcogenides(TMCs)hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties.However,overcoming the impedance mismatch at the low loading is still a challenge for TMCs due to the restricted loss pathways caused by their high-density characteristic.Here,an interface engineering based on the heterostructure of 2D Cr_(5)Te_(8) and graphite is in situ constructed via a one-step chemical vapor deposit to modulate impedance matching and introduce multiple attenuation mechanisms.Intriguingly,the Cr_(5)Te_(8)@EG(ECT)heterostructure exhibits a minimum reflection loss of up to−57.6 dB at 15.4 GHz with a thin thickness of only 1.4 mm under a low filling rate of 10%.The density functional theory calculations confirm that the splendid performance of ECT heterostructure primarily derives from charge redistribution at the abundant intimate interfaces,thereby reinforcing interfacial polarization loss.Furthermore,the ECT coating displays a remarkable radar cross section reduction of 31.9 dB m^(2),demonstrating a great radar microwave scattering ability.This work sheds light on the interfacial coupled stimulus response mechanism of TMC-based heterogeneous structures and provides a feasible strategy to manipulate high-quality TMCs for excellent microwave absorbers.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>−11</sup> m<sup>3</sup>∙kg<sup>−1</sup>∙s<sup>−2</sup>, respectively. Every equation could be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and a. Furthermore, every equation could also be explained in terms of Avogadro’s number and the number of electrons in 1 C. However, the ratio of the gravitational force to the electric force cannot be uniquely determined when the unit of the Planck constant (Js) is changed. In this study, we showed that every equation can be described in terms of Planck constant. From the assumption of minimum mass, the ratio of gravitational force to electric force could be elucidated.
文摘Liver transplantation(LT)remains the treatment of choice for early-stage hepato-cellular carcinoma(HCC)and offers the best long-term oncological outcomes.However,the increasing waiting list for LT has led to a significant dropout rate as patients experience tumor progression beyond the Milan criteria.Currently,locoregional therapies,such as microwave ablation(MWA),have emerged as promising bridge treatments for patients awaiting LT.These therapies have shown promising results in preventing tumor progression,thus reducing the dropout rate of LT candidates.Despite the efficacy of MWA in treating HCC,tumoral recurrence after ablation remains a major challenge and significantly impacts the prognosis of HCC patients.Therefore,accurately diagnosing tumoral recurrence post-ablation is crucial.Recent studies have developed novel imaging features based on magnetic resonance imaging of HCC,which could provide essential information for predicting early tumoral recurrence after MWA.These advancements could address this unresolved challenge,improving the clinical outcomes of patients on the LT waiting list.This article explored the current landscape of MWA as a bridge therapy for HCC within the Milan criteria,high-lighting the emerging role of novel imaging-based features aimed at improving the prediction of tumor recurrence after MWA.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature that were mathematically connected. Next, we proposed an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>-11</sup> m<sup>3</sup>·kg<sup>-1</sup>·s<sup>-2</sup>, respectively. Every equation can be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and α. However, these equations are difficult to follow. Using the correspondence principle with the thermodynamic principles in solid-state ionics, we propose a canonical ensemble to explain these equations in this report. For this purpose, we show that every equation can be explained in terms of Avogadro’s number and the number of electrons in 1 C.