期刊文献+
共找到1,864篇文章
< 1 2 94 >
每页显示 20 50 100
Improving the ductility and toughness of nano-TiC/AZ61 composite by optimizing bimodal grain microstructure via extrusion speed
1
作者 Lingling Fan Mingyang Zhou +5 位作者 Wulve Lao Yuwenxi Zhang Hajo Dieringa Ying Zeng Yuanding Huang Gaofeng Quan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3264-3280,共17页
In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical p... In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite. 展开更多
关键词 Nano-TiC/AZ61 composite Extrusion speed Heterogeneous bimodal grain structure Increasing ductility mechanism Toughening mechanism
下载PDF
Deformation modes and fracture behaviors of peak-aged Mg-Gd-Y alloys with different grain structures
2
作者 Jiangli Ning Jialiao Zhou +4 位作者 Bosong Gao Chunlei Zhang Hailong Shi Liansheng Chen Xiaojun Wang 《Journal of Magnesium and Alloys》 CSCD 2024年第10期4140-4156,共17页
The ductility and toughness of peak-aged(PA)Mg-RE alloys are significantly influenced by their grain structure characteristics.To investigate this issue,we examined PA Mg-8.24Gd-2.68Y(wt.%)alloys with two distinct gra... The ductility and toughness of peak-aged(PA)Mg-RE alloys are significantly influenced by their grain structure characteristics.To investigate this issue,we examined PA Mg-8.24Gd-2.68Y(wt.%)alloys with two distinct grain structures:an extruded-PA sample with dynamic recrystallized(DRXed)fine grains and coarse hot-worked grains,and an extrusion-solution treated and PA sample with grown large equiaxed grains.The results showed that the extruded-PA sample demonstrated a favorable combination of tensile strength(426 MPa)and ductility(7.0%).Although intergranular microcracks nucleated in the DRXed region due to strain incompatibility,crack propagation was impeded by the DRXed fine grains,inducing intrinsic and extrinsic toughening mechanisms.On the other hand,the hot-worked grains in the extruded-PA sample initiated transgranular cracks after a relatively high strain,attributed to the strain partitioning effect,ultimately leading to failure.In comparison,the solution-treated-PA sample exhibited lower tensile strength and ductility(338 MPa and 3.7%,respectively).Intergranular cracks nucleated in the CG sample before necking,and the readily formed critical crack,facilitated by the large grain size,exhibited unstable crack growth,resulting in premature failure.This work offers valuable insights for designing high-performance PA Mg-RE alloys and preventing premature failure in practical applications. 展开更多
关键词 In-situ tensile test Mg-RE alloy grain structure Deformation mode Fracture mechanism
下载PDF
Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy 被引量:12
3
作者 陈送义 陈康华 +1 位作者 贾乐 彭国胜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期329-334,共6页
The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture t... The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12. 展开更多
关键词 7085 aluminum alloy Zener-Hollomon parameter hot deformation grain structure dynamic recrystallization static recrystallization
下载PDF
Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature 被引量:6
4
作者 朱庆丰 李磊 +3 位作者 班春燕 赵志浩 左玉波 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1301-1306,共6页
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen... The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24. 展开更多
关键词 multi-directional forging high purity aluminum structure uniformity grain refinement
下载PDF
Grain structure effect on quench sensitivity of Al-Zn-Mg-Cu-Cr alloy 被引量:1
5
作者 李承波 韩素琦 +2 位作者 刘胜胆 邓运来 张新明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2276-2282,共7页
The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscop... The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscopy. The results show that with the decrease of quenching rate from 960 ℃/s to 2 ℃/s, the hardness after aging is decreased by about 33% for the homogenized and solution heat treated alloy(H-alloy) with large equiaxed grains and about 43% for the extruded and solution heat treated alloy(E-alloy) with elongated grains and subgrains. Cr-containing dispersoids make contribution to about 33% decrement in hardness of the H-alloy due to slow quenching; while in the E-alloy, the amount of(sub) grain boundaries is increased by about one order of magnitude, which leads to a further 10% decrement in hardness due to slow quenching and therefore higher quench sensitivity. 展开更多
关键词 grain structure Al-Zn-Mg-Cu-Cr alloy DISPERSOIDS quench sensitivity
下载PDF
Mixed grain structure and mechanical property anisotropy of AZ40 magnesium alloy bar with diameter of 160 mm 被引量:1
6
作者 石国梁 张奎 +4 位作者 李兴刚 李永军 马鸣龙 袁家伟 卢春芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3944-3952,共9页
The mixed grain structure and mechanical property anisotropy of AZ40 magnesium alloy bar with a diameter of 160 mm manufactured by "multi-direction forging(MDF) + extrusion + online cooling" technique were inves... The mixed grain structure and mechanical property anisotropy of AZ40 magnesium alloy bar with a diameter of 160 mm manufactured by "multi-direction forging(MDF) + extrusion + online cooling" technique were investigated by optical microscopy(OM), scanning electron microscopy(SEM), X-ray diffraction macro-texture measurement and room temperature(RT) tensile test. The results show that mixed grain structure is caused by the micro-segregation of Al in semi-continuous casting ingot. Homogenization of(380 °C, 8 h) +(410 °C, 12 h) cannot totally eliminate such micro-segregation. During MDF and extrusion, the dendrite interiors with 3%-4% Al(mass fraction) transform to fine grain zones, yet the dendrite edges with about 6% Al transform to coarse grain zones. XRD macro-textures of the outer, R/2 and center show typical fiber texture characteristics and the intensity of [0001]//Ra D orientation in the outer(11.245) is about twice as big as those in the R/2(6.026) and center(6.979). The as-extruded AZ40 magnesium alloy bar has high elongation(A) and moderate ultimate tensile strength(Rm) in both extrusion direction(ED) and radius direction(Ra D), i.e., A of 19%-25% and Rm of 256-264 MPa; however, yield strength(Rp0.2) shows anisotropy and heterogeneity, i.e., 103 MPa in Ra D, 137 MPa in ED-C(the center) and 161 MPa in ED-O(the outer), which are mainly caused by the texture.(155 °C, 7 h) +(170 °C, 24 h) aging has no influence on strength and elongation of AZ40 magnesium bar. 展开更多
关键词 AZ40 magnesium alloy mixed grain structure mechanical properties ANISOTROPY MICRO-SEGREGATION texture
下载PDF
A CELLULAR AUTOMATON-APPROACH TO SIMULATION OFGRAIN STRUCTURE DEVELOPMENT INELECTROSLAG CASTING 被引量:4
7
作者 X.Q. Wei and L. Zhou School of Mechanical Electrical Engineering and School of Chemistry and Materials Science, Nanchang University, Nanchang 330029, China Manuscript received 30 July 1999 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期794-799,共6页
A 3-D cellular automaton model of thermal transfer and solidification has been developed, aiming at a simulational study of the grain structure development in electroslag casting. The program we developed for simulat... A 3-D cellular automaton model of thermal transfer and solidification has been developed, aiming at a simulational study of the grain structure development in electroslag casting. The program we developed for simulation of the model allows the effects of both metallurgical factors, including solidification point, supercooling required for nucleation and its scattering, and liquid/solid interface energy, and thermophysical factors, including heat conduction coeffcients, heat transfer coefficients and latent heat, to be investigated. The effect of process control can be indirectly inspected with the simulation by varying the melting rate. A box counting algorithm was employed to estimate the local curvature of liquid/solid interface. A series of simulated experiments of electroslag casting processes have been carried out. The simulation started from the beginning of the electroslag casting and proceeds by iteration of certain rules, during which a uniform constant slag temperature and a constant melting rate were assumed. It has been observed that a pool of molten metal forms and deepens gradually under constant melting rate. The deepening of the pool slows down with the simulated electroslag casting process, and the depth and shape of the pool tends to be steady after certain height of cast is formed. A finger-like grain structure with the fingers approximately normal to the bottom of the molten metal pool was generally observed. Higher latent heat was found to enhance dendritic growth. The results agree well with general observation of the grain structures in electroslag castings and demonstrate the applicability of cellular automaton modeling to structural development in casting. 展开更多
关键词 electroslay casting grain structure SIMULATION
下载PDF
Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy:Co-regulating effect from coarse Al_(2)Y and submicron Mg_(17)Al_(12) particles 被引量:8
8
作者 Yong-Kang Li Min Zha +6 位作者 Hai-Long Jia Si-Qing Wang Hongmin Zhang Xiao Ma Teng Tian Pinkui Ma Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1571-1582,共12页
Grain boundary strengthening is an effective strategy for increasing mechanical properties of Mg alloys.However,this method offers limited strengthening in bimodal grain-structured Mg alloys due to the difficultly in ... Grain boundary strengthening is an effective strategy for increasing mechanical properties of Mg alloys.However,this method offers limited strengthening in bimodal grain-structured Mg alloys due to the difficultly in increasing the volume fraction of fine grains while keeping a small grain size.Herein,we show that the volume fraction of fine grains(FGs,~2.5μm)in the bimodal grain structure can be tailored from~30 vol.%in Mg-9 Al-1 Zn(AZ91)to~52 vol.%in AZ91-1Y(wt.%)processed by hard plate rolling(HPR).Moreover,a superior combination of a high ultimate tensile strength(~405 MPa)and decent uniform elongation(~9%)is achieved in present AZ91-1Y alloy.It reveals that a desired bimodal grain structure can be tailored by the co-regulating effect from coarse Al_(2)Y particles resulting in inhomogeneous recrystallization,and dispersed submicron Mg_(17)Al_(12)particles depressing the growth of recrystallized grains.The findings offer a valuable insight in tailoring bimodal grain-structured Mg alloys for optimized strength and ductility. 展开更多
关键词 Magnesium alloys Bimodal grain structure Second-phase particles Recrystallization STRENGTH DUCTILITY
下载PDF
Agricultural Production Structure Optimization: A Case Study of Major Grain Producing Areas, China 被引量:4
9
作者 LU Sha-sha LIU Yan-sui +1 位作者 LONG Hua-lou GUAN Xing-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第1期184-197,共14页
A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco... A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty. 展开更多
关键词 major grain producing areas agricultural production structure optimization interval-probabilistic programming food security farmers’income increase China
下载PDF
Grain structure and tensile property of Al-Li alloy sheet caused by different cold rolling reduction 被引量:6
10
作者 Yun-long MA Jin-feng LI +3 位作者 Feng-jian SANG Hong-ying LI Zi-qiao ZHENG Cheng HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1569-1582,共14页
The effect of cold rolling reduction(50%-90%)on the grain structures of solutionized 1445 Al-Li alloy sheet at525-575 ℃ was investigated through electron backscatter diffraction(EBSD).Although the solutionization tem... The effect of cold rolling reduction(50%-90%)on the grain structures of solutionized 1445 Al-Li alloy sheet at525-575 ℃ was investigated through electron backscatter diffraction(EBSD).Although the solutionization temperature is elevated to 575 ℃,the sheet is not completely recrystallized.The main recrystallization model is subgrain coalescence and growth,and the non-recrystallization is due to the formed nano-sized Al3(Sc,Zr)dispersoids,which pin the grain boundaries,subgrain boundaries and dislocations.With increasing the cold rolling reduction,the fraction and size of the recrystallized grains in the sheet solutionized at525 ℃ are decreased,but the fraction of the subgrains is increased,leading to a decrease in the fraction of the deformed structures.Meanwhile,the number fraction of high-angle boundaries(HABs)is increased.Due to the decreased fraction of the deformed structures and increased fraction of the HABs,the T8-aged 1445 Al-Li alloy sheet displays a decrease trend in the strength and heterogeneity with increasing the cold rolling reduction.At higher solutionization temperature of 575 ℃,the fraction of the recrystallized grains and their size are obviously increased. 展开更多
关键词 Al Li alloy grain structure RECRYSTALLIZATION STRENGTH cold rolling reduction
下载PDF
Formation mechanism of gradient-distributed particles and their effects on grain structure in 01420 Al-Li alloy 被引量:5
11
作者 张新明 叶凌英 +2 位作者 刘颖维 杜予晅 罗智辉 《Journal of Central South University of Technology》 EI 2008年第2期147-152,共6页
Fine-grained 01420 Al-Li alloy sheets were produced by thermo-mechanical processing based on the mechanism of particle stimulated nucleation of recrystallization.The thermo-mechanically processed sheets were observed ... Fine-grained 01420 Al-Li alloy sheets were produced by thermo-mechanical processing based on the mechanism of particle stimulated nucleation of recrystallization.The thermo-mechanically processed sheets were observed to contain layers of different microstructures along the thickness.The precipitate behavior of the second phase particles and their effects on the distribution of dislocations and layered recrystallized grain structure were analyzed by optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffractometry(XRD).The formation mechanism of the gradient particles was discussed.The results show that after aging,a gradient distribution of large particles along the thickness is observed,the particles in the surface layer(SL) are distributed homogeneously,whereas those in the center layer(CL) are mainly distributed parallel to the rolling direction,and the volume fraction of the particles in the SL is higher than that in the CL.Subsequent rolling in the presence of layer-distributed particles results in a corresponding homogeneous distribution of highly strained regions in the SL and a banded distribution of them in CL,which is the main reason for the formation of layered grain structure along the thickness in the sheets. 展开更多
关键词 01420 Al-Li alloy layered grain structure grain refinement thermo-mechanical processing particle stimulatednucleation(PSN)
下载PDF
Effect of grain boundary sliding on the toughness of ultrafine grain structure steel: A molecular dynamics simulation study 被引量:1
12
作者 谢红献 刘波 +1 位作者 殷福星 于涛 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期54-61,共8页
Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001 }/{ ... Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001 }/{ 110} type and { 110}/{ 111 } type grain boundary can improve the impact toughness. Then, the mechanism of grain boundary sliding is studied and it is found that the motion of dislocations along the grain boundary is the underlying cause of the grain boundary sliding. Finally, the sliding of the grain boundary is analyzed from the standpoint of the energy. We conclude that the measures which can increase the quantity of the {001}/{110} type and {110}/{ 111} type grain boundary and elongate the free gliding distance of dislocations along these grain boundaries will improve the low-temperature impact toughness of the ultrafine grain structure steel. 展开更多
关键词 molecular dynamics simulations grain boundary CRACK ultrafine grain structure steel
下载PDF
Changes in Land Use and Agricultural Production Structure Before and After the Implementation of Grain for Green Program in Western China–Taking Two Typical Counties as Examples 被引量:6
13
作者 ZHOU Ping WEN An-bang +4 位作者 YAN Dong-chun SHI Zhong-lin GUO Jin JU Zhan-sheng ZHANG Yi-lan 《Journal of Mountain Science》 SCIE CSCD 2014年第2期526-534,共9页
Soil erosion becomes a serious environmental problem in the world, especially in western China. An effective management practice called the Grain for Green Program(GGP), which was launched in 1999, aims to reduce soil... Soil erosion becomes a serious environmental problem in the world, especially in western China. An effective management practice called the Grain for Green Program(GGP), which was launched in 1999, aims to reduce soil and water loss and alleviate the ecological environment problem in western China. Two typical counties in western China, the Zhongxian(in Chongqing Municipality) and Ansai(in Shaanxi Province) were chosen to evaluate the dynamic changes of land use and agricultural production structure before and after the implementation of the Program in this paper. The results showed that the cultivated land area was reduced by 7.08% from 1989 to 2003. The cultivated land per person was decreased by 8.42% during 1999-2003. Moreover, the stability index of the secondary sector of the economy was increased from 0.91 in the period 1990-1999 to 0.94 in the following ten years. In addition, the stability index of tertiary economic sector increased from 0.88 to 0.92 in Zhongxian county. Meanwhile, the cultivated land area was reduced by 15.48% from 1990 to 1999. The soil erosion modulus was decreased by 33.33% from 1999 to 2006. Also, the stability index of secondary and tertiary economic sectors was 0.86 in the period 1998-2002. However, it decreased by 77% during 2002 to 2007 in Ansai County. These results imply that the Grain for Green Program had different impact on the two regions. Several effective strategies of soil and water conservation have been carried out to ameliorate the sustainable development of ecological environment and economy in these two counties of western China. 展开更多
关键词 Cultivated land Stability index Agricultural production structure grain for Green Program (GGP) Three Gorges Reservoir region Loess Plateau
下载PDF
Microscopic Structures of Endosperms Before and After Gelatinization in Rice Varieties with Varied Grain Quality 被引量:1
14
作者 YANGZe-min WANGWei-jin +3 位作者 LANSheng-yin XUZhen-xiu ZHOUZhu-qing WA 《Agricultural Sciences in China》 CAS CSCD 2003年第1期113-118,F003,T002,共8页
The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelat... The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelatinization varied in different parts of the grain and in different varieties under the same experimental conditions. The gelatinization of dorsal side was the most complete. Its cells were decomposed totally into puff-like or flocculent materials. The ventral side gelatinized less thoroughly, appearing agglomerate and some cell frames were still visible. The middle part gelatinized most incompletely and the cells were still integrated. Evident differences in gelatinization were observed among different varieties, the dorsal, ventral and middle parts of high quality varieties gelatinized more thoroughly than those of the corresponding parts of low quality varieties respectively. An obvious concavity often appeared in the middle of the cross-section of the low quality grains while the cross-section of high quality grains was normally flat. The same phenomenon was noted when comparing the early maturing indica rice and the late maturing indica rice. Varietal difference of gelatinization in dorsal sides was not as distinct as in middle parts and ventral sides. The difference among dorsal side, middle part and ventral side in gelatinization was greater in low quality grains than that of high quality grains. In addition, a lot of ruptured cells were observed in the cross-section of high quality rice, while few of them could be found in the low quality rice. Apparently, the number of ruptured cells is positively correlated with rice quality. Quality of rice grain also has positive correlation with the rate of water absorption and extension. High rates of water absorption and extension lead to better gelatinization of rice grain, and hence indicate good quality. 展开更多
关键词 Indica rice grain quality GELATINIZATION Microscopic structure
下载PDF
Bimodal grain structure formation and strengthening mechanisms in Mg-Mn-Al-Ca extrusion alloys 被引量:1
15
作者 Jianyue Zhang Peng Peng +1 位作者 Qingshan Yang Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4407-4419,共13页
The effects of small additions of calcium (0.1%and 0.5%~1) on the dynamic recrystallization behavior and mechanical properties of asextruded Mg-1Mn-0.5Al alloys were investigated.Calcium microalloying led to the forma... The effects of small additions of calcium (0.1%and 0.5%~1) on the dynamic recrystallization behavior and mechanical properties of asextruded Mg-1Mn-0.5Al alloys were investigated.Calcium microalloying led to the formation of Al_(2)Ca in as-cast Mg-1Mn-0.5Al-0.1Ca alloy and both Mg_(2)Ca and Al_(2)Ca phases in Mg-1Mn-0.5Al-0.5Ca alloy.The formed Al_(2)Ca particles were fractured during extrusion process and distributed at grain boundary along extrusion direction (ED).The Mg_(2)Ca phase was dynamically precipitated during extrusion process,hindering dislocation movement and reducing dislocation accumulation in low angle grain boundaries (LAGBs) and hindering the transformation of high density of LAGBs into high angle grain boundaries (HAGBs).Therefore,a bimodal structure composed of fine dynamically recrystallized (DRXed) grains and coarse un DRXed regions was formed in Ca-microalloyed Mg-1Mn-0.5Al alloys.The bimodal structure resulted in effective hetero-deformation-induced (HDI) strengthening.Additionally,the fine grains in DRXed regions and the coarse grains in un DRXed regions and the dynamically precipitated Mg_(2)Ca phase significantly enhanced the tensile yield strength from 224 MPa in Mg-1Mn-0.5Al to335 MPa and 352 MPa in Mg-1Mn-0.5Al-0.1Ca and Mg-1Mn-0.5Al-0.5Ca,respectively.Finally,a yield point phenomenon was observed in as-extruded Mg-1Mn-0.5Al-x Ca alloys,more profound with 0.5%Ca addition,which was due to the formation of (■) extension twins in un DRXed regions. 展开更多
关键词 Magnesium alloys EXTRUSION Dynamic precipitation Dynamic recrystallization Bimodal grain structure Mechanical properties
下载PDF
Atomic-scale simulation of nano-grains:structure and diffusion properties 被引量:1
16
作者 WEN Yu-hua CHEN Zheng-zheng +1 位作者 WANG Chong-yu ZHU Ru-zeng 《原子与分子物理学报》 CAS CSCD 北大核心 2003年第2期149-152,共4页
Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of ... Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of grain size on structure and diffusion properties of the nanograins. The results reveal that as the grain size is reduced, the fraction of grain surface increases significantly, and the surface width is approximately constant; the mean atomic energy of the surface increases distinctly, but that of the grain interior varies insignificantly; the diffusion coefficient is increased sharply, and the relation of the diffusion coefficient and the grain size is close to exponential relation below 10 nm. 展开更多
关键词 Nano grain structure Diffustion property Molecular dynamics simulation
下载PDF
Structure and Magnetic Properties of Fe_(76.5)Si_(13.5)B_9Cu_1 Alloy with Nanoscale Grain Size 被引量:1
17
作者 Fei ZHOU Kaiyuan HE Lizhi CHENG and Zuhan LAI(Dept. of Materials Science and Engineering, Northeastern University, Shenyang, 110006, China)( Dept. of Phys., Northeastern University) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第6期430-434,共5页
The structure and magnetic properties of Fe76.5Si13.5B9Cu1 alloys with a nanocrystalline (NC) bcc Fe(Si) phase trom about 23 to 46 nm in diameter, which were first formed into amorphous ribbons and then annealed at va... The structure and magnetic properties of Fe76.5Si13.5B9Cu1 alloys with a nanocrystalline (NC) bcc Fe(Si) phase trom about 23 to 46 nm in diameter, which were first formed into amorphous ribbons and then annealed at various temperatures between 703 and 773 K, have been investigated. At annealing temperatures from 703 to 748 K, the single NC bcc(Si) phase is obtained in the crystallized alloys. The grain size and the Si-content in the NC bcc Fe(Si) phase for the alloys annealed at different temperatures are presented. The soft magnetic properties and the saturation magnetostriction for the alloys with the NC bcc Fe(Si) phase are also measured. The results show that, the saturation magnetizotion and the permeability are improved for the alloys with only the NC bcc Fe(Si) phase and become better with decreasing of the NC bcc phase size, and the saturation magnetostriction declines for the alloys with increasing Si-content in the NC bcc Fe(Si) phase. 展开更多
关键词 SI structure and Magnetic Properties of Fe B9Cu1 Alloy with Nanoscale grain Size Cu
下载PDF
Effect of milling process on the core-shell structures and dielectric properties of fine-grained BaTiO_3-based X7R ceramic materials 被引量:3
18
作者 Tian Wang Xiao-hui Wang Hai Wen Long-tu Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期345-348,共4页
Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmissio... Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker. 展开更多
关键词 fine-grain barium titanate core-shell structure milling process microstructure CAPACITOR
下载PDF
Role of Ordering Energy in Formation of Grain Structure and Special Boundaries Spectrum in Ordered Alloys with L12 Superstructure 被引量:1
19
作者 O.B.Perevalova (Institute of Strength Physics and Material Science, Russian Academy of Sciences, Siberian Branch pr. Academicheskii, 2/1, 634048, Tomsk, Russia) E. V.Konovalova, N.A.Koneva and E. VKozlov (State University of Architecture and Building, Sol 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第6期585-590,共6页
It was revealed that an average energy of special boundaries is proportional to APB energy in the alloys with the L12 superstructure. This fact proves the appearance of the GAPBs in the planes of location of special b... It was revealed that an average energy of special boundaries is proportional to APB energy in the alloys with the L12 superstructure. This fact proves the appearance of the GAPBs in the planes of location of special boundaries in coincidence sites of ordered alloys. It was determined that the more energy of special boundaries in ordered alloys, the more energy of complex stacking fault. There is a correlation between the distribution of special boundaries as a function its relative energy and ordering energy: the more ordering energy, the more degree of washed away of distribution. The correlation between average relative energy of special boundaries and ordering energy was detected: the more ordering energy, the more average energy of special boundaries. The reverse dependence between ordering energy and average number of special boundaries in grains limited by boundaries of general type was discovered. 展开更多
关键词 Role of Ordering Energy in Formation of grain structure and Special Boundaries Spectrum in Ordered Alloys with L12 Superstructure
下载PDF
Effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging
20
作者 Wei Gu Jing-yuan Li Yi-de Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第7期721-728,共8页
The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatt... The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference. 展开更多
关键词 aluminum alloys low-angle grain boundaries dislocation structure AGING dislocation density
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部