For solving the dilemma of the short exothermic life-span of WO_(3)based metastable interstitial composites(MICs)with extensive application prospect,this paper has firstly designed the promising antiwetting Al/WO_(3)M...For solving the dilemma of the short exothermic life-span of WO_(3)based metastable interstitial composites(MICs)with extensive application prospect,this paper has firstly designed the promising antiwetting Al/WO_(3)MICs via electrophoresis assembly of nano-Al and WO_(3)particles fabricated by hydrothermal synthesis method,followed by the subsequent fluorination treatment.A combination of X ray diffraction(XRD),field emission scanning electron microscope(FESEM),energy dispersive X-ray spectroscopy(EDX),and Fourier transform infrared spectroscopy(FT-IR)techniques were utilized in order to characterize the crystal structure,microstructure,and elemental composition distribution of target films after different natural exposure tests.The product with uniform distribution and high purity possesses a high contact angle of~170°and a minute sliding angle of~1°,and displays the outstanding anti-wetting property using droplets with different surface tensions.It also shows great moisture stability in high relative-humidity circumstances after one year of the natural exposure experiment.Notably,the heat output of a fresh sample can reach up to 2.3 kJ/g and retain 96%after the whole exposure test,showing outstanding thermo-stability for at least one year.This work further proposed the mechanism of antiwetting Al/WO_(3)MICs considering the variation tendency of their DSC curve,providing a valuable theoretical reference for designing other self-protected MICs with a long exothermic life-span applied in wide fields of national defense,military industry,etc.展开更多
Low profile antenna in communication is a new methodology. Fractal geometry is a methodology through which size reduction is achieved. A Self-similar fractal antenna using multicantor technique is proposed and experim...Low profile antenna in communication is a new methodology. Fractal geometry is a methodology through which size reduction is achieved. A Self-similar fractal antenna using multicantor technique is proposed and experimentally studied. Space-filling cantors and self-similarity properties of fractal geometry have been adopted in the proposed antenna to miniaturize the size of antenna. The antenna is designed in such a way to operate at MICS band (Medical Implant communication Service) for wireless telemedicine application. The prototype antenna exhibits wideband characteristics and provides a good agreement of return loss (S11). Experimental return loss has been compared with that which is obtained using method of moments. The objective of using self-similar concept in antenna makes it flexible in terms of controlling the resonance and bandwidth. In this paper, the Self-similar property of fractal geometry is examined by maintaining return loss (S11) more than –30 dB approximately in all the iterations (n) and the prototype antenna has return loss greater than –10 dB and exhibits wideband characteristics.展开更多
本实验旨在探究Mic60在小鼠卵母细胞体外成熟中的作用。选取4~6周龄的雌性C57BL/6J小鼠,注射孕马血清促性腺激素(PMSG)48 h后采集卵母细胞并随机分为对照组和Mic60抑制组(包括50、100、130、150μmol/L组,Miclxin组为130μmol/L)。卵母...本实验旨在探究Mic60在小鼠卵母细胞体外成熟中的作用。选取4~6周龄的雌性C57BL/6J小鼠,注射孕马血清促性腺激素(PMSG)48 h后采集卵母细胞并随机分为对照组和Mic60抑制组(包括50、100、130、150μmol/L组,Miclxin组为130μmol/L)。卵母细胞体外培养16 h后,通过免疫荧光染色检测纺锤体形态、ROS水平、线粒体分布和质量,利用qPCR检测抗氧化基因表达、线粒体呼吸链亚基的表达、整合应激反应相关基因的表达。结果表明:与对照组相比,130μmol/L Mic60抑制剂会降低卵母细胞体外成熟率(78.29%vs.21.08%,P<0.01),并显著阻碍纺锤体的组装;与对照组相比,Miclxin组卵母细胞中的ROS水平升高(P<0.05),且Sod1(0.83 vs. 0.22)和Sod2(0.84 vs. 0.27)基因表达降低(P<0.05),线粒体分布异常比例升高(0.16 vs. 0.57,P<0.05),线粒体膜电位水平降低(1.61 vs. 1.05,P<0.05),ATP产生降低(1.16 vs. 0.79,P<0.05);Miclxin组卵母细胞线粒体呼吸链复合体亚基Ndufv2和Sdha表达降低(P<0.05),Cyc1表达升高(P<0.05),卵母细胞mtDNA拷贝数降低(19 324 vs. 9 066,P<0.05);与对照组相比,Miclxin组卵母细胞Oma1、Dele1、Eif2ak1、eIF2α基因表达上调(P<0.05),触发了整合应激反应(Integrated Stress Response,ISR)并上调了ISR主要效应因子Atf4、Atf5和Chop的表达(P<0.05)。可见,抑制Mic60会通过损害线粒体功能并触发ISR影响卵母细胞体外成熟效果。展开更多
A BFSK and OOK IF base-band circuit is provided to implement the low-IF RF receivers for a dualband MICS/BCC network controller. In order to transfer the massive vital data immediately, the IF circuit is comprised of ...A BFSK and OOK IF base-band circuit is provided to implement the low-IF RF receivers for a dualband MICS/BCC network controller. In order to transfer the massive vital data immediately, the IF circuit is comprised of the fast-settling feed-forward programmable gain amplifier(PGA), a Gm-C complex filter, the fixed gain amplifier(FGA) and a 4-input "quadratic sum" demodulator. A novel auto-switched coarse gain-setting method is adopted in the PGA to enhance the reaction speed and narrow the output signal range. Also the PGA does not suffer the same stability constraint as open-loop topologies. The complex filter fulfills the function of image rejection,in which the center frequency and bandwidth can be adjusted individually. The FGA is used to ameliorate the linearity and the 'quadratic sum' demodulator can reduce the overall power consumption. The designed IF circuit is fabricated with SMIC 0.18 μm CMOS process. The chip area is about 5.36 mm^2. Measurement results are given to verify the design goals.展开更多
In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiat...In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiation area is required for the extracted ion beams,which is crucial because it directly affects the experimental precision and therapeutic effect.Specifically,ultra-large-area and high-uniformity scanning are crucial requirements for spacecraft radiation effects assessment and serve as core specification for beamline terminal design.In the 300 MeV proton and heavy ion accelerator complex at the Space Environment Simulation and Research Infrastructure(SESRI),proton and heavy ion beams will be accelerated and ultimately delivered to three irradiation terminals.In order to achieve the required large irradiation area of 320 mm×320 mm,horizontal and vertical scanning magnets are used in the extraction beam line.However,considering the various requirements for beam species and energies,the tracking accuracy of power supplies(PSs),the eddy current effect of scanning magnets,and the fluctuation of ion bunch structure will reduce the irradiation uniformity.To mitigate these effects,a beam uniformity optimization method based on the measured beam distribution was proposed and applied in the accelerator complex at SESRI.In the experiment,the uniformity is successfully optimized from 75%to over 90%after five iterations of adjustment to the PS waveforms.In this paper,the method and experimental results were introduced.展开更多
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ...Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.展开更多
基金funded by the financial support from National Natural Science Foundation of China(Grant No 21805014 and No82102635)Science and Technology Research Project of Chongqing Education Board(Grant No.KJQN201901428)。
文摘For solving the dilemma of the short exothermic life-span of WO_(3)based metastable interstitial composites(MICs)with extensive application prospect,this paper has firstly designed the promising antiwetting Al/WO_(3)MICs via electrophoresis assembly of nano-Al and WO_(3)particles fabricated by hydrothermal synthesis method,followed by the subsequent fluorination treatment.A combination of X ray diffraction(XRD),field emission scanning electron microscope(FESEM),energy dispersive X-ray spectroscopy(EDX),and Fourier transform infrared spectroscopy(FT-IR)techniques were utilized in order to characterize the crystal structure,microstructure,and elemental composition distribution of target films after different natural exposure tests.The product with uniform distribution and high purity possesses a high contact angle of~170°and a minute sliding angle of~1°,and displays the outstanding anti-wetting property using droplets with different surface tensions.It also shows great moisture stability in high relative-humidity circumstances after one year of the natural exposure experiment.Notably,the heat output of a fresh sample can reach up to 2.3 kJ/g and retain 96%after the whole exposure test,showing outstanding thermo-stability for at least one year.This work further proposed the mechanism of antiwetting Al/WO_(3)MICs considering the variation tendency of their DSC curve,providing a valuable theoretical reference for designing other self-protected MICs with a long exothermic life-span applied in wide fields of national defense,military industry,etc.
文摘Low profile antenna in communication is a new methodology. Fractal geometry is a methodology through which size reduction is achieved. A Self-similar fractal antenna using multicantor technique is proposed and experimentally studied. Space-filling cantors and self-similarity properties of fractal geometry have been adopted in the proposed antenna to miniaturize the size of antenna. The antenna is designed in such a way to operate at MICS band (Medical Implant communication Service) for wireless telemedicine application. The prototype antenna exhibits wideband characteristics and provides a good agreement of return loss (S11). Experimental return loss has been compared with that which is obtained using method of moments. The objective of using self-similar concept in antenna makes it flexible in terms of controlling the resonance and bandwidth. In this paper, the Self-similar property of fractal geometry is examined by maintaining return loss (S11) more than –30 dB approximately in all the iterations (n) and the prototype antenna has return loss greater than –10 dB and exhibits wideband characteristics.
文摘本实验旨在探究Mic60在小鼠卵母细胞体外成熟中的作用。选取4~6周龄的雌性C57BL/6J小鼠,注射孕马血清促性腺激素(PMSG)48 h后采集卵母细胞并随机分为对照组和Mic60抑制组(包括50、100、130、150μmol/L组,Miclxin组为130μmol/L)。卵母细胞体外培养16 h后,通过免疫荧光染色检测纺锤体形态、ROS水平、线粒体分布和质量,利用qPCR检测抗氧化基因表达、线粒体呼吸链亚基的表达、整合应激反应相关基因的表达。结果表明:与对照组相比,130μmol/L Mic60抑制剂会降低卵母细胞体外成熟率(78.29%vs.21.08%,P<0.01),并显著阻碍纺锤体的组装;与对照组相比,Miclxin组卵母细胞中的ROS水平升高(P<0.05),且Sod1(0.83 vs. 0.22)和Sod2(0.84 vs. 0.27)基因表达降低(P<0.05),线粒体分布异常比例升高(0.16 vs. 0.57,P<0.05),线粒体膜电位水平降低(1.61 vs. 1.05,P<0.05),ATP产生降低(1.16 vs. 0.79,P<0.05);Miclxin组卵母细胞线粒体呼吸链复合体亚基Ndufv2和Sdha表达降低(P<0.05),Cyc1表达升高(P<0.05),卵母细胞mtDNA拷贝数降低(19 324 vs. 9 066,P<0.05);与对照组相比,Miclxin组卵母细胞Oma1、Dele1、Eif2ak1、eIF2α基因表达上调(P<0.05),触发了整合应激反应(Integrated Stress Response,ISR)并上调了ISR主要效应因子Atf4、Atf5和Chop的表达(P<0.05)。可见,抑制Mic60会通过损害线粒体功能并触发ISR影响卵母细胞体外成熟效果。
文摘A BFSK and OOK IF base-band circuit is provided to implement the low-IF RF receivers for a dualband MICS/BCC network controller. In order to transfer the massive vital data immediately, the IF circuit is comprised of the fast-settling feed-forward programmable gain amplifier(PGA), a Gm-C complex filter, the fixed gain amplifier(FGA) and a 4-input "quadratic sum" demodulator. A novel auto-switched coarse gain-setting method is adopted in the PGA to enhance the reaction speed and narrow the output signal range. Also the PGA does not suffer the same stability constraint as open-loop topologies. The complex filter fulfills the function of image rejection,in which the center frequency and bandwidth can be adjusted individually. The FGA is used to ameliorate the linearity and the 'quadratic sum' demodulator can reduce the overall power consumption. The designed IF circuit is fabricated with SMIC 0.18 μm CMOS process. The chip area is about 5.36 mm^2. Measurement results are given to verify the design goals.
基金Supported by National Key R&D Program of China(2019YFA0405400)。
文摘In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiation area is required for the extracted ion beams,which is crucial because it directly affects the experimental precision and therapeutic effect.Specifically,ultra-large-area and high-uniformity scanning are crucial requirements for spacecraft radiation effects assessment and serve as core specification for beamline terminal design.In the 300 MeV proton and heavy ion accelerator complex at the Space Environment Simulation and Research Infrastructure(SESRI),proton and heavy ion beams will be accelerated and ultimately delivered to three irradiation terminals.In order to achieve the required large irradiation area of 320 mm×320 mm,horizontal and vertical scanning magnets are used in the extraction beam line.However,considering the various requirements for beam species and energies,the tracking accuracy of power supplies(PSs),the eddy current effect of scanning magnets,and the fluctuation of ion bunch structure will reduce the irradiation uniformity.To mitigate these effects,a beam uniformity optimization method based on the measured beam distribution was proposed and applied in the accelerator complex at SESRI.In the experiment,the uniformity is successfully optimized from 75%to over 90%after five iterations of adjustment to the PS waveforms.In this paper,the method and experimental results were introduced.
基金This research work is supported by Sichuan Science and Technology Program(Grant No.2022YFS0586)the National Key R&D Program of China(Grant No.2019YFC1509301)the National Natural Science Foundation of China(Grant No.61976046).
文摘Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.