Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
In this study,we found that the intensity of interannual variability in the summer upper-tropospheric zonal wind has significantly weakened over Northeast Asia and the subtropical western North Pacific(WNP) since th...In this study,we found that the intensity of interannual variability in the summer upper-tropospheric zonal wind has significantly weakened over Northeast Asia and the subtropical western North Pacific(WNP) since the mid-1990s,concurrent with the previously documented decrease of the westerly jet over North China and Northwest China.Corresponding to this weakening of zonal wind variability,the meridional displacement of the East Asian westerly jet(EAJ) manifested as the leading mode of zonal wind variability over the WNP and East Asia(WNP-EA) before the mid-1990s but not afterward.The energetics of the anomalous pattern associated with the meridional displacement of the EAJ suggests that barotropic energy conversion,from basic flow to anomalous patterns,has led to the weakening of the variability in the EAJ meridional displacement and to a change in the leading dominant mode since the mid-1990s.The barotropic energy conversion efficiently maintained the anomalies associated with the variability in the EAJ meridional displacement during 1979-1993 but acted to dampen the anomalies during 1994-2008.A further investigation of the energetics suggests that the difference in the patterns of the circulation anomaly associated with either the first leading mode or the meridional displacement of the EAJ,i.e.,a southwest-northeast tilted pattern during 1979-1993 and a zonally oriented pattern during 1994-2008,has contributed greatly to the change in barotropic energy conversion.展开更多
This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the ...This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.展开更多
AIM: To evaluate the positive effects of blue-violet light filtering lenses in delaying myopia and relieving asthenopia in juveniles. METHODS: Sixty ametropia juveniles (aged range, 11-15y) were randomized into t...AIM: To evaluate the positive effects of blue-violet light filtering lenses in delaying myopia and relieving asthenopia in juveniles. METHODS: Sixty ametropia juveniles (aged range, 11-15y) were randomized into two groups: the test group (30 children, 60 eyes), wearing blue-violet light filtering lenses; and the control group (30 children, 60 eyes), wearing ordinary aspherical lenses. Baseline refractive power of the affected eyes and axial length of the two groups was recorded. After 1-year, the patients underwent contrast sensitivity (glare and non-glare under bright and dark conditions), accommodation-related testing, asthenopia questionnaire assessment, and adverse reaction questionnaire assessment. RESULTS: After ly of wearing the filtering lenses, changes in refractive power and axial length were not significantly different between the two groups (P〉0.05). Under bright conditions, the contrast sensitivities at low and medium- frequency grating (vision angles of 6.3, 4.0, and 2.5) with glare in the test group were significantly higher than in the control group (P〈0.05), while the contrast sensitivity at low-frequency grating (vision angles of 6.3 and 4.0) in the absence of glare in the test group was higher than in the control group (P〈0.05). Under glare and non-glare dark conditions, the contrast sensitivities of various frequencies in the test group did not show significant differences compared with those in the control group (P〉0.05). In the test group, the amplitude of accommodation, accommodative lag, and accommodative sensitivity of patients wearing glasses for 6 and 12mo were significantly elevated (P〈0.05), while the asthenopia gratings were significantly decreased (P〈0.05). Nevertheless, in the control group,the amplitude of accommodation, accommodative lag, and accommodative sensitivity after 12mo were not significantly altered compared with baseline (P〉0.05), and the asthenopia grating was not significantly decreased (P〉0.05). In addition, after wearing glasses for 6 to 12mo, the asthenopia grating of patients in the test group decreased significantly compared with the control group (P〈0.05). At 12mo, the constituent ratio of adverse reactions did not show significant difference between the two groups (P〉0.05). CONCLUSION: A l-year follow-up reveal that compare with ordinary glasses, short-wavelength filtering lenses (blue/ violet-light filters) increase the low- and medium-frequency contrast sensitivity under bright conditions and improved accommodation. They effectively relieved asthenopia without severe adverse reactions, suggesting potential for clinical application. However, no significant advantages in terms of refractive power or axial length progression were found compared with ordinary aspheric lenses.展开更多
This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indic...This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface wanning, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Train), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964- 93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol- radiation and aerosol-cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.展开更多
We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is th...We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is that the p+nn-n+device possesses an additional middle-doped layer to separate the multiplication region from the absorption region.By properly controlling the electric field distribution in the p+nn-n+device,an electric field of 906 kV/cm has been achieved,which is 2.6 times higher than that in the p+n-n+device.At a reverse bias of-0.1 V at 77 K,both devices show a 100%cut-off wavelength of 2.25μm.The p+n-n+and p+nn-n+show a dark current density of 1.5×10^-7 A/cm^2 and 1.8×10^-8 A/cm^2,and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5μm,respectively.A maximum multiplication gain of 55 is achieved in the p+nn-n+device while the value is only less than 2 in the p+n-n+device.Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.展开更多
A bifacial silicon solar cell under monochromatic illumination in frequency modulation by the rear side is being studied for the optimization of base thickness. The density of photogenerated carriers in the base is ob...A bifacial silicon solar cell under monochromatic illumination in frequency modulation by the rear side is being studied for the optimization of base thickness. The density of photogenerated carriers in the base is obtained by resolution of the continuity equation, with the help of boundary conditions at the junction surface (n<sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">/p) and the rear face (p/p</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">) of the base. For a short wavelength corresponding to a high absorption coefficient, the AC photocurrent density is calculated and represented according to the excess minority carrier’s recombination velocity at the junction, for different modulation frequency values. The expression of the AC recombination velocity of excess minority carriers at the rear surface of the base of the solar cell is then deduced, depending on both, the absorption coefficient of the silicon material and the thickness of the base. Compared to the intrinsic AC recombination velocity, the optimal thickness is extracted and modeled in a mathematical relationship, as a decreasing function of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">modulated frequency of back illumination. Thus under these operating conditions</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> a maximum short-circuit photocurrent is obtained and a low</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cost bifacial solar cell can be achieved by reducing material (Si) to elaborate the base thickness.</span>展开更多
In this paper,we demonstrate bias-selectable dual-band short-or mid-wavelength infrared photodetectors based on In0.24Ga0.76As0.21Sb0.79 bulk materials and InAs/GaSb type-II superlattices with cutoff wavelengths of 2....In this paper,we demonstrate bias-selectable dual-band short-or mid-wavelength infrared photodetectors based on In0.24Ga0.76As0.21Sb0.79 bulk materials and InAs/GaSb type-II superlattices with cutoff wavelengths of 2.2μm and 3.6μm,respectively.At 200 K,the short-wave channel exhibits a peak quantum efficiency of 42%and a dark current density of5.93×10^-5)/cm^2at 500 mV,thereby providing a detectivity of 1.55×10^11cm·Hz^1/2/W.The mid-wave channel exhibits a peak quantum efficiency of 31%and a dark current density of 1.22×10^-3A/cm^2at-300 mV,thereby resulting in a detectivity of 2.71×10^10cm·Hz^1/2/W.Moreover,we discuss the band alignment and spectral cross-talk of the dual-band n-i-p-p-i-n structure.展开更多
In the past 40 years of China's reform and opening up, China's economy has been developing rapidly, and industrialization and urbanization have begun to take shape. At present, China is heading towards an informatio...In the past 40 years of China's reform and opening up, China's economy has been developing rapidly, and industrialization and urbanization have begun to take shape. At present, China is heading towards an information society. Mineral resources have played a great supporting role during this process. During the whole of 2017, China consumed 2.344 billion tons of iron ore, 2.4 billion tons of cement and 3.65 billion tons of raw coal (Fig. 1).展开更多
Remarkable achievements have been made in China's agricultural development since the late 1970s. Nevertheless, deep-rooted problems are arising from inefficient farming practices. From mid- and long-term perspectives...Remarkable achievements have been made in China's agricultural development since the late 1970s. Nevertheless, deep-rooted problems are arising from inefficient farming practices. From mid- and long-term perspectives, migration of China's agricultural labor will slow and large-scale operation of farmland will accelerate. Although grain supply and demand have maintained a tight balance, new potentials still exist in improving grain production. Under the pressures of resource and environmental constraints, advancing the green and efficient transition of agriculture will become a new trend in China's agricultural development. In this context, the treatment of agricultural pollution, supply-side structural reform and innovation of agricultural subsidy policy are of strategic significance to the transition and upgrade of China's agriculture.展开更多
The distribution of residual stresses through thickness of 5 mm-thick ME21 magnesium alloy extruded plates was analyzed non-destructively using short-wavelength X-ray diffraction(SWXRD),and the effect of homogenizatio...The distribution of residual stresses through thickness of 5 mm-thick ME21 magnesium alloy extruded plates was analyzed non-destructively using short-wavelength X-ray diffraction(SWXRD),and the effect of homogenization annealing before extrusion on the residual stress was discussed.The classic d 0 method with an annealed stress-free reference specimen was employed to determine the residual stress of the extruded plates.The residual stress results showed that the gradient of residual stress in the transverse direction was larger than that of the extrusion direction.The homogenization process prior to extrusion weaken the formed sample’s texture.The maximum residual stress of the as-extruded plate was reduced,and the residual stress distribution was homogenized.展开更多
In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform ...In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform infrared(FTIR) spectrometer,and atomic force microscope(AFM). The x-ray diffraction exhibits high order satellite peaks with a measured period of 31.06 ?(theoretical value is 30.48 ?), the mismatch between the GaSb substrate and AlInAsSb achieves-162 arcsec,and the root-mean square(RMS) roughness for typical material growths has achieved around 1.6 ? over an area of 10 μm×10 μm. At room temperature, the photoluminescence(PL) spectrum shows a cutoff wavelength of 1.617 μm.展开更多
Luminescent organic radicals have garnered increasing attention owing to their versatile applications in sensing, imaging, and organic light-emitting diodes(OLEDs), attributed to their unique emission properties origi...Luminescent organic radicals have garnered increasing attention owing to their versatile applications in sensing, imaging, and organic light-emitting diodes(OLEDs), attributed to their unique emission properties originating from the doublet spin state.However, the natural narrow bandgap of organic free radicals typically limits their emission to the long-wavelength region.Designing luminescent organic radicals with short-wavelength emission remains a significant challenge. Herein, a series of carbon-centered radicals with short-wavelength emission(383–476 nm) by combining N-heterocyclic carbenes with various polycyclic aromatic hydrocarbons(PAHs)(2-naphthyl, 2a~Ⅰ and 2b~Ⅰ;2-phenanthryl, 2a~Ⅱand 2b~Ⅱ;2-anthryl, 2a~Ⅲand 2b~Ⅲ;3-phenanthryl, 2a~Ⅳand 2b~Ⅳ). Theoretical calculations reveal that the introduction of PAHs significantly increases the ΔE_(D2-D1) in 2a^(Ⅰ–Ⅲ)and 2b^(Ⅰ–Ⅲ)compared to that in phenyl-derived radical congeners. Consequently, the internal transition from D2 to D1 is impeded, leading to a high yield of D2 emission and a suppressed Kasha's rule, thereby overcoming the limitations imposed by their narrow bandgap. For 2a~Ⅳ and 2b~Ⅳ, despite a moderately large ΔED2-D1value, the ΔED3-D1value exceeds 1 e V, indicating that their emission likely originates from the D3 state. Furthermore, we utilized 2a~Ⅲand 2b~Ⅲ as emissive materials in OLEDs,resulting in blue emissions with external quantum efficiencies of 7.5% and 6.5%, respectively.展开更多
Meteorological conditions associated with intense rainfall and great floods over mid- and lower reaches of Yangtze River are studied by analyzing the large-, synoptic-and meso-a-scale circulation systems for 1991, 199...Meteorological conditions associated with intense rainfall and great floods over mid- and lower reaches of Yangtze River are studied by analyzing the large-, synoptic-and meso-a-scale circulation systems for 1991, 1996 and 1998. It is found that the advance and retreat of subtropical high over the West Pacific, the monsoon moisture surge from the South China Sea, cold air outbreak over mid- and high-latitudes, and the meso-α scale systems (250-2500 km) from the Tibetan Pleateau as well, are responsible for intense rainfall over the Yangtze River Valley. The persistent and heavy rains and great floods over the Yangtze River Valley occurred when all these four systems are synergetic or in phase lock.展开更多
Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor(CMOS)compatible visible-blind short-wavelength infrared(SWIR) silicon photodetector is of interest for security,telecommunic...Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor(CMOS)compatible visible-blind short-wavelength infrared(SWIR) silicon photodetector is of interest for security,telecommunications, and environmental sensing. Here, we present a silver-supersaturated silicon(Si:Ag)-based photodetector that exhibits a visible-blind and highly enhanced sub-bandgap photoresponse. The visible-blind response is caused by the strong surface-recombination-induced quenching of charge collection for short-wavelength excitation, and the enhanced sub-bandgap response is attributed to the deep-level electrontraps-induced band-bending and two-stage carrier excitation. The responsivity of the Si:Ag photodetector reaches 504 mA · W^(-1) at 1310 nm and 65 m A · W^(-1) at 1550 nm under-3 V bias, which stands on the stage as the highest level in the hyperdoped silicon devices previously reported. The high performance and mechanism understanding clearly demonstrate that the hyperdoped silicon shows great potential for use in optical interconnect and power-monitoring applications.展开更多
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40810059005 and 40725016)
文摘In this study,we found that the intensity of interannual variability in the summer upper-tropospheric zonal wind has significantly weakened over Northeast Asia and the subtropical western North Pacific(WNP) since the mid-1990s,concurrent with the previously documented decrease of the westerly jet over North China and Northwest China.Corresponding to this weakening of zonal wind variability,the meridional displacement of the East Asian westerly jet(EAJ) manifested as the leading mode of zonal wind variability over the WNP and East Asia(WNP-EA) before the mid-1990s but not afterward.The energetics of the anomalous pattern associated with the meridional displacement of the EAJ suggests that barotropic energy conversion,from basic flow to anomalous patterns,has led to the weakening of the variability in the EAJ meridional displacement and to a change in the leading dominant mode since the mid-1990s.The barotropic energy conversion efficiently maintained the anomalies associated with the variability in the EAJ meridional displacement during 1979-1993 but acted to dampen the anomalies during 1994-2008.A further investigation of the energetics suggests that the difference in the patterns of the circulation anomaly associated with either the first leading mode or the meridional displacement of the EAJ,i.e.,a southwest-northeast tilted pattern during 1979-1993 and a zonally oriented pattern during 1994-2008,has contributed greatly to the change in barotropic energy conversion.
基金supported by the National Natural Science Foundation of China (Grant No. 41105046)the National Basic Research Program of China (Grant No. 2010CB950403)the Chinese Academy of Sciences (Grant No. XDA05090000)
文摘This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.
基金Supported by Projects of Medical and Health Technology Development Program in Zhejiang Province(No.2011KYA020)
文摘AIM: To evaluate the positive effects of blue-violet light filtering lenses in delaying myopia and relieving asthenopia in juveniles. METHODS: Sixty ametropia juveniles (aged range, 11-15y) were randomized into two groups: the test group (30 children, 60 eyes), wearing blue-violet light filtering lenses; and the control group (30 children, 60 eyes), wearing ordinary aspherical lenses. Baseline refractive power of the affected eyes and axial length of the two groups was recorded. After 1-year, the patients underwent contrast sensitivity (glare and non-glare under bright and dark conditions), accommodation-related testing, asthenopia questionnaire assessment, and adverse reaction questionnaire assessment. RESULTS: After ly of wearing the filtering lenses, changes in refractive power and axial length were not significantly different between the two groups (P〉0.05). Under bright conditions, the contrast sensitivities at low and medium- frequency grating (vision angles of 6.3, 4.0, and 2.5) with glare in the test group were significantly higher than in the control group (P〈0.05), while the contrast sensitivity at low-frequency grating (vision angles of 6.3 and 4.0) in the absence of glare in the test group was higher than in the control group (P〈0.05). Under glare and non-glare dark conditions, the contrast sensitivities of various frequencies in the test group did not show significant differences compared with those in the control group (P〉0.05). In the test group, the amplitude of accommodation, accommodative lag, and accommodative sensitivity of patients wearing glasses for 6 and 12mo were significantly elevated (P〈0.05), while the asthenopia gratings were significantly decreased (P〈0.05). Nevertheless, in the control group,the amplitude of accommodation, accommodative lag, and accommodative sensitivity after 12mo were not significantly altered compared with baseline (P〉0.05), and the asthenopia grating was not significantly decreased (P〉0.05). In addition, after wearing glasses for 6 to 12mo, the asthenopia grating of patients in the test group decreased significantly compared with the control group (P〈0.05). At 12mo, the constituent ratio of adverse reactions did not show significant difference between the two groups (P〉0.05). CONCLUSION: A l-year follow-up reveal that compare with ordinary glasses, short-wavelength filtering lenses (blue/ violet-light filters) increase the low- and medium-frequency contrast sensitivity under bright conditions and improved accommodation. They effectively relieved asthenopia without severe adverse reactions, suggesting potential for clinical application. However, no significant advantages in terms of refractive power or axial length progression were found compared with ordinary aspheric lenses.
基金supported by the UK– China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) of China, as part of the Newton Fundsupported by the UK National Centre for Atmospheric Science–Climate (NCAS– Climate) at the University of Reading
文摘This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface wanning, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Train), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964- 93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol- radiation and aerosol-cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874179,61804161,and 61975121)the National Key Research and Development Program of China(Grant No.2019YFB2203400).
文摘We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is that the p+nn-n+device possesses an additional middle-doped layer to separate the multiplication region from the absorption region.By properly controlling the electric field distribution in the p+nn-n+device,an electric field of 906 kV/cm has been achieved,which is 2.6 times higher than that in the p+n-n+device.At a reverse bias of-0.1 V at 77 K,both devices show a 100%cut-off wavelength of 2.25μm.The p+n-n+and p+nn-n+show a dark current density of 1.5×10^-7 A/cm^2 and 1.8×10^-8 A/cm^2,and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5μm,respectively.A maximum multiplication gain of 55 is achieved in the p+nn-n+device while the value is only less than 2 in the p+n-n+device.Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.
文摘A bifacial silicon solar cell under monochromatic illumination in frequency modulation by the rear side is being studied for the optimization of base thickness. The density of photogenerated carriers in the base is obtained by resolution of the continuity equation, with the help of boundary conditions at the junction surface (n<sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">/p) and the rear face (p/p</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">) of the base. For a short wavelength corresponding to a high absorption coefficient, the AC photocurrent density is calculated and represented according to the excess minority carrier’s recombination velocity at the junction, for different modulation frequency values. The expression of the AC recombination velocity of excess minority carriers at the rear surface of the base of the solar cell is then deduced, depending on both, the absorption coefficient of the silicon material and the thickness of the base. Compared to the intrinsic AC recombination velocity, the optimal thickness is extracted and modeled in a mathematical relationship, as a decreasing function of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">modulated frequency of back illumination. Thus under these operating conditions</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> a maximum short-circuit photocurrent is obtained and a low</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cost bifacial solar cell can be achieved by reducing material (Si) to elaborate the base thickness.</span>
基金Project supported by the National Basic Research Program of China(Grant Nos.2016YFB0402403 and 2013CB932904)the National Natural Science Foundation of China(Grant Nos.61290303 and 61306013)China Postdoctoral Science Foundation(Grant No.2016M601100)
文摘In this paper,we demonstrate bias-selectable dual-band short-or mid-wavelength infrared photodetectors based on In0.24Ga0.76As0.21Sb0.79 bulk materials and InAs/GaSb type-II superlattices with cutoff wavelengths of 2.2μm and 3.6μm,respectively.At 200 K,the short-wave channel exhibits a peak quantum efficiency of 42%and a dark current density of5.93×10^-5)/cm^2at 500 mV,thereby providing a detectivity of 1.55×10^11cm·Hz^1/2/W.The mid-wave channel exhibits a peak quantum efficiency of 31%and a dark current density of 1.22×10^-3A/cm^2at-300 mV,thereby resulting in a detectivity of 2.71×10^10cm·Hz^1/2/W.Moreover,we discuss the band alignment and spectral cross-talk of the dual-band n-i-p-p-i-n structure.
文摘In the past 40 years of China's reform and opening up, China's economy has been developing rapidly, and industrialization and urbanization have begun to take shape. At present, China is heading towards an information society. Mineral resources have played a great supporting role during this process. During the whole of 2017, China consumed 2.344 billion tons of iron ore, 2.4 billion tons of cement and 3.65 billion tons of raw coal (Fig. 1).
文摘Remarkable achievements have been made in China's agricultural development since the late 1970s. Nevertheless, deep-rooted problems are arising from inefficient farming practices. From mid- and long-term perspectives, migration of China's agricultural labor will slow and large-scale operation of farmland will accelerate. Although grain supply and demand have maintained a tight balance, new potentials still exist in improving grain production. Under the pressures of resource and environmental constraints, advancing the green and efficient transition of agriculture will become a new trend in China's agricultural development. In this context, the treatment of agricultural pollution, supply-side structural reform and innovation of agricultural subsidy policy are of strategic significance to the transition and upgrade of China's agriculture.
基金This work is supported by the National Key R&D Plan(grant No.2016YFB0301105)the Fundamental Research Funds for the Central Universities(grant No.FRF-TP-16-016A1).
文摘The distribution of residual stresses through thickness of 5 mm-thick ME21 magnesium alloy extruded plates was analyzed non-destructively using short-wavelength X-ray diffraction(SWXRD),and the effect of homogenization annealing before extrusion on the residual stress was discussed.The classic d 0 method with an annealed stress-free reference specimen was employed to determine the residual stress of the extruded plates.The residual stress results showed that the gradient of residual stress in the transverse direction was larger than that of the extrusion direction.The homogenization process prior to extrusion weaken the formed sample’s texture.The maximum residual stress of the as-extruded plate was reduced,and the residual stress distribution was homogenized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774130 11474248,61176127,61006085,61274013,and 61306013the Key Program for International Science and Technology Cooperation Projects of China(Grant No.2011DFA62380)the Ph.D. Programs Foundation of the Ministry of Education of China(Grant No.20105303120002)
文摘In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform infrared(FTIR) spectrometer,and atomic force microscope(AFM). The x-ray diffraction exhibits high order satellite peaks with a measured period of 31.06 ?(theoretical value is 30.48 ?), the mismatch between the GaSb substrate and AlInAsSb achieves-162 arcsec,and the root-mean square(RMS) roughness for typical material growths has achieved around 1.6 ? over an area of 10 μm×10 μm. At room temperature, the photoluminescence(PL) spectrum shows a cutoff wavelength of 1.617 μm.
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China (22025107)the National Youth Top-notch Talent Support Program of China+5 种基金the National Natural Science Foundation of China (22305190)the Shaanxi Fundamental Science Research Project for Chemistry&Biology (22JHZ003)the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province (2023-GHZD-15)the China Postdoctoral Science Foundation (2022M712573)the Xi’an Key Laboratory of Functional Supramolecular Structure and Materialsthe FM&EM International Joint Laboratory of Northwest University。
文摘Luminescent organic radicals have garnered increasing attention owing to their versatile applications in sensing, imaging, and organic light-emitting diodes(OLEDs), attributed to their unique emission properties originating from the doublet spin state.However, the natural narrow bandgap of organic free radicals typically limits their emission to the long-wavelength region.Designing luminescent organic radicals with short-wavelength emission remains a significant challenge. Herein, a series of carbon-centered radicals with short-wavelength emission(383–476 nm) by combining N-heterocyclic carbenes with various polycyclic aromatic hydrocarbons(PAHs)(2-naphthyl, 2a~Ⅰ and 2b~Ⅰ;2-phenanthryl, 2a~Ⅱand 2b~Ⅱ;2-anthryl, 2a~Ⅲand 2b~Ⅲ;3-phenanthryl, 2a~Ⅳand 2b~Ⅳ). Theoretical calculations reveal that the introduction of PAHs significantly increases the ΔE_(D2-D1) in 2a^(Ⅰ–Ⅲ)and 2b^(Ⅰ–Ⅲ)compared to that in phenyl-derived radical congeners. Consequently, the internal transition from D2 to D1 is impeded, leading to a high yield of D2 emission and a suppressed Kasha's rule, thereby overcoming the limitations imposed by their narrow bandgap. For 2a~Ⅳ and 2b~Ⅳ, despite a moderately large ΔED2-D1value, the ΔED3-D1value exceeds 1 e V, indicating that their emission likely originates from the D3 state. Furthermore, we utilized 2a~Ⅲand 2b~Ⅲ as emissive materials in OLEDs,resulting in blue emissions with external quantum efficiencies of 7.5% and 6.5%, respectively.
基金This work was supported by the National Key Basic Research Development Program (Grant Nos. G1998040908 (part 1) G1998040900 (part 2)) the Key Project of Chinese Academy of Sciences (Grant No. KZCX2-203).
文摘Meteorological conditions associated with intense rainfall and great floods over mid- and lower reaches of Yangtze River are studied by analyzing the large-, synoptic-and meso-a-scale circulation systems for 1991, 1996 and 1998. It is found that the advance and retreat of subtropical high over the West Pacific, the monsoon moisture surge from the South China Sea, cold air outbreak over mid- and high-latitudes, and the meso-α scale systems (250-2500 km) from the Tibetan Pleateau as well, are responsible for intense rainfall over the Yangtze River Valley. The persistent and heavy rains and great floods over the Yangtze River Valley occurred when all these four systems are synergetic or in phase lock.
基金National Natural Science Foundation of China(NSFC)(51532007,61574124,61721005)
文摘Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor(CMOS)compatible visible-blind short-wavelength infrared(SWIR) silicon photodetector is of interest for security,telecommunications, and environmental sensing. Here, we present a silver-supersaturated silicon(Si:Ag)-based photodetector that exhibits a visible-blind and highly enhanced sub-bandgap photoresponse. The visible-blind response is caused by the strong surface-recombination-induced quenching of charge collection for short-wavelength excitation, and the enhanced sub-bandgap response is attributed to the deep-level electrontraps-induced band-bending and two-stage carrier excitation. The responsivity of the Si:Ag photodetector reaches 504 mA · W^(-1) at 1310 nm and 65 m A · W^(-1) at 1550 nm under-3 V bias, which stands on the stage as the highest level in the hyperdoped silicon devices previously reported. The high performance and mechanism understanding clearly demonstrate that the hyperdoped silicon shows great potential for use in optical interconnect and power-monitoring applications.