To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa...To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.展开更多
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h...A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.展开更多
The solar climate of our Moon is analyzed using the results of numerical simulations and the recently released data of the Diviner Lunar Radiometer Experiment (DLRE) to assess (a) the resulting distribution of the sur...The solar climate of our Moon is analyzed using the results of numerical simulations and the recently released data of the Diviner Lunar Radiometer Experiment (DLRE) to assess (a) the resulting distribution of the surface temperature, (b) the related global mean surface temperature T<sub>s</sub>>, and (c) the effective radiation temperature T<sub>e</sub> <sub></sub>often considered as a proxy for T<sub>s</sub>> of rocky planets and/or their natural satellites, where T<sub>e</sub> <sub></sub>is based on the global radiation budget of the well-known “thought model” of the Earth in the absence of its atmosphere. Because the Moon consists of similar rocky material like the Earth, it comes close to this thought model. However, the Moon’s astronomical features (e.g., obliquity, angular velocity of rotation, position relative to the disc of the solar system) differ from that of the Earth. Being tidally locked to the Earth, the Moon’s orbit around the Sun shows additional variation as compared to the Earth’s orbit. Since the astronomical parameters affect the solar climate, we predicted the Moon’s orbit coordinates both relative to the Sun and the Earth for a period of 20 lunations starting May 24, 2009, 00:00 UT1 with the planetary and lunar ephemeris DE430 of the Jet Propulsion Laboratory of the California Institute of Technology. The results revealed a mean heliocentric distance for the Moon and Earth of 1.00124279 AU and 1.00166376 AU, respectively. The mean geocentric distance of the Moon was 384792 km. The synodic and draconic months deviated from their respective means in a range of -5.7 h to 6.9 h and ±3.4 h, respectively. The deviations of the anomalistic months from their mean range between -2.83 d and 0.97 d with the largest negative deviations occurring around the points of inflection in the curve that represents the departure of the synodic month from its mean. Based on the two successive passages of the Sun through the ascending node of the lunar equator plane, the time interval between them corresponds to 347.29 days, i.e., it is slightly longer than the mean draconic year of 346.62 days. We computed the local solar insolation as input to the multilayer-force restore method of Kramm et al. (2017) that is based on the local energy budget equation. Due to the need to spin up the distribution of the regolith temperature to equilibrium, analysis of the model results covers only the last 12 lunations starting January 15, 2010, 07:11 UT1. The predicted slab temperatures, T<sub>slab</sub>, considered as the realistic surface temperatures, follow the bolometric temperatures, T<sub>bol</sub>, acceptably. According to all 24 DLRE datasets related to the subsolar longitude ø<sub>ss</sub>, the global averages of the bolometric temperature amounts to T<sub>bol</sub>=201.1k± 0.6K. Based on the globally averaged emitted infrared radiation of F<sub>IR</sub>>=290.5W·m<sup>-2</sup>± 3.0W·m<sup>-2</sup> derived from the 24 DLRE datasets, the effective radiative temperature of the Moon is T<sub>e, M</sub>>=T<sub>bol>1/4</sub>=271.0k± 0.7K so that T<sub>bol</sub>>≅0.742T<sub>e, M</sub>. The DLRE observations suggest that in the case of rocky planets and their natural satellites, the globally averaged surface temperature is notably lower than the effective radiation temperature. They differ by a factor that depends on the astronomical parameters especially on the angular velocity of rotation.展开更多
The variation of the temperature of the solar cell subjected to the incident global solar radiation along the local daytime in relation to its efficiency is studied. The heat balance equation is solved. The solution r...The variation of the temperature of the solar cell subjected to the incident global solar radiation along the local daytime in relation to its efficiency is studied. The heat balance equation is solved. The solution revealed that the cell temperature is a function of the maximum value of the daily incident global solar radiation qmax, the convection heat transfer coefficient (h), the optical, physical and the geometrical parameters of the cell. The temperature dependence of the short circuit current Isc, the dark saturation current Io, the open circuit voltage Voc, and the energy band gap Eg characterizing a Silicon solar cell is considered in evaluating the cell efficiency. Computations of the efficiency concerning operating conditions and astronomical locations (Egypt) as illustrative examples are given.展开更多
The solar desalinator is a low cost installation and operation equipment that can contribute to tackling the problem of water shortages in the world.Because of the importance of this equipment,the present work has the...The solar desalinator is a low cost installation and operation equipment that can contribute to tackling the problem of water shortages in the world.Because of the importance of this equipment,the present work has the objective to quantify the relation of the temperature of the water with the production of the equipment.For this,a compact desalinator with glass cover in square pyramidal form and a heating system controlled by a logic programmer was built.As a result,it was verified the efficiency of the logic controller as an auxiliary tool for experimental work and the relationship between temperature ranges and desalination production.展开更多
PTA sol was prepared using titanium tetrachloride (TiCl4), hydrogen peroxide (H2O2) and ammonia (NH3·H2O), and then stable anatase-TiO2 hydrosol was synthesized by refluxing the PTA sol at 100 ℃. It was fo...PTA sol was prepared using titanium tetrachloride (TiCl4), hydrogen peroxide (H2O2) and ammonia (NH3·H2O), and then stable anatase-TiO2 hydrosol was synthesized by refluxing the PTA sol at 100 ℃. It was found that TiO2 hydrosol can efficiently photo-degrade methyl orange (MO) under UV-vis light irradiation. Photocatalytic reactions at the temperature of 38 to 100 ℃ all followed pseudo-first-order rate law, and the temperature had a great effect on the reaction rate. The rate constants increased by about 6 times from 3.52×10^-4 to 2.17×10^-3 min^-1 when the temperature was adjusted from 38 to 100 ℃. Consequently, this photocatalytic course can be accelerated by using the infrared light of solar energy to increase the temperature of the photo-catalytic reaction, it should be a potential way to make full use of solar light in photocatalysis in practice.展开更多
The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radia...The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
Solar cells and other renewable energy sources are crucial in today's world where sustainability and environmental consciousness is at peak.Because of this,creating the optimal capacity is a fair aim for the opera...Solar cells and other renewable energy sources are crucial in today's world where sustainability and environmental consciousness is at peak.Because of this,creating the optimal capacity is a fair aim for the operators of such technologies.The transformation of solar energy into either electricity by means of photovoltaics or into useable fuel by means of photo electrochemical cells remained a primary objective for research organizations and development sectors.In this piece,we will take a look back at the history of solar cells and examine their progression through the generations.The significant aspects which have an impact on the solar cells' performance are also discussed.This article provides a comprehensive and in-depth overview of the important aspects that affect the solar cells' performance,as well as a discussion of the application of bio-inspired optimization algorithms to improve the parameters of solar cells.Reviewing critical factors and their optimization for solar cell performance enhancement is crucial.It helps identify key performance factors,understand limitations,and challenges,and identify effective optimization strategies.By evaluating trade-offs and synergies,it guides future research and informs industrial applications,leading to more efficient and sustainable solar cell technologies.展开更多
A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into...A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.展开更多
Energy demand is increasing while we are facing a depletion of fossils fuels, the main source of energy production in the world. These last years, photovoltaic (PV) system technologies are growing rapidly among altern...Energy demand is increasing while we are facing a depletion of fossils fuels, the main source of energy production in the world. These last years, photovoltaic (PV) system technologies are growing rapidly among alternative sources of energy to contribute to mitigation of climate change. However, PV system efficiency researches operating under West African weather conditions are nascent. The first objective of this study is to investigate the sensitivity of common monocrystalline PV efficiency to local meteorological parameters (temperature, humidity, solar radiation) in two contrasted cities over West Africa: Niamey (Niger) in a Sahelian arid area and Abidjan (Cote d’Ivoire) in atropical humid area. The second objective is to quantify the effect of dust accumulation on PV efficiency in Niamey (Niger). The preliminary results show that PV efficiency is more sensitive to high temperature change especially under Niamey climate conditions (warmer than Abidjan) where high ambient temperatures above 33°C lead to an important decrease of PV efficiency. Increase of relative humidity induces a decrease of PV efficiency in both areas (Niamey and Abidjan). A power loss up to 12.46% is observed in Niamey after 21 days of dust accumulation.展开更多
Solar thermal power is currently one of the important trends and research hotspots of solar energy. In present paper, basic physical model is proposed to investigate the solar thermal power, and the operating temperat...Solar thermal power is currently one of the important trends and research hotspots of solar energy. In present paper, basic physical model is proposed to investigate the solar thermal power, and the operating temperature is optimized to maximize the electricity generating efficiency. When the concentrated energy flux rises, the absorption efficiency of heat receiver will first increase and then decrease, while the increasing of flow velocity can improve the absorption performance. As the working temperature rising, the heat loss of infrared radiation and natural convection increases quickly, so the absorption efficiency obviously decreases, while the Carnot efficiency of the steam turbine cycle will rise. Because of the coupling effects of the heat absorption cycle and turbine cycle, the electricity generating efficiency will reach maximum with the optimal working temperature.展开更多
Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar c...Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar cells by means of simultaneous running test. This kind of comparison is of importance practically, because the comparison of only inherent characteristics cannot include environmental parameters such as temperature totally. It was concluded that both types of solar cells provided almost the same energy for one year. The amorphous silicon solar cell provided more energy in summer while the tandem solar cell was advantageous in winter. It is due to the fact that the decrease in energy conversion at the higher cell temperature is more noticeable in tandem solar cells.展开更多
Solar powered cold water dispenser apparatus is fabricated and experimental results are shown in this work. The system contains solar panels, two low energy fans, water tank fabricated from clay (pottery), thermally s...Solar powered cold water dispenser apparatus is fabricated and experimental results are shown in this work. The system contains solar panels, two low energy fans, water tank fabricated from clay (pottery), thermally sealed box, and pipes. Once these contents are connected together, testing was conducted on water temperatures at both ends. The preliminary results showed a drop in temperature of around 15℃. This is achieved by utilizing free power from the sun.展开更多
The sensitivity of mono-crystalline solar PV module towards dust accumulation, ambient temperature, relative humidity, and cloud cover is investigated from May to August 2015 for Niamey’s environment. Two solar modul...The sensitivity of mono-crystalline solar PV module towards dust accumulation, ambient temperature, relative humidity, and cloud cover is investigated from May to August 2015 for Niamey’s environment. Two solar modules with the same characteristics have been used to carry out the impacts of the dust on the solar PV module. One of the modules is being cleaned every morning and the second one was used for monitoring the effect of dust accumulation onto the surface of the unclean module for May and June. The ambient temperature around the solar PV module was recorded at the same time with the output voltage and the output current to assess the impacts of ambient temperature on the PV conversion efficiency. In addition to these field test measurements, the solar radiation data measured in National Center of Solar Energy (CNES) of Niamey were also used. Also the relative humidity for the study area data obtained NASA power agro-climatology website was used. Results show that the dust accumulation has the greatest impact on the performance of the PV module followed by temperature, relative humidity and cloud cover. Exposing the module in 23 days has reduced the energy output by 15.29%. The power output and the conversion efficiency of the PV module have dropped by 2.6% and 0.49% respectively. The relative humidity also has reduced the energy output by 4.3 Wh/m2/day.展开更多
文摘To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.
基金supported by the Natural Science Foundation of China(22075043,21875034,61704093)。
文摘A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.
文摘The solar climate of our Moon is analyzed using the results of numerical simulations and the recently released data of the Diviner Lunar Radiometer Experiment (DLRE) to assess (a) the resulting distribution of the surface temperature, (b) the related global mean surface temperature T<sub>s</sub>>, and (c) the effective radiation temperature T<sub>e</sub> <sub></sub>often considered as a proxy for T<sub>s</sub>> of rocky planets and/or their natural satellites, where T<sub>e</sub> <sub></sub>is based on the global radiation budget of the well-known “thought model” of the Earth in the absence of its atmosphere. Because the Moon consists of similar rocky material like the Earth, it comes close to this thought model. However, the Moon’s astronomical features (e.g., obliquity, angular velocity of rotation, position relative to the disc of the solar system) differ from that of the Earth. Being tidally locked to the Earth, the Moon’s orbit around the Sun shows additional variation as compared to the Earth’s orbit. Since the astronomical parameters affect the solar climate, we predicted the Moon’s orbit coordinates both relative to the Sun and the Earth for a period of 20 lunations starting May 24, 2009, 00:00 UT1 with the planetary and lunar ephemeris DE430 of the Jet Propulsion Laboratory of the California Institute of Technology. The results revealed a mean heliocentric distance for the Moon and Earth of 1.00124279 AU and 1.00166376 AU, respectively. The mean geocentric distance of the Moon was 384792 km. The synodic and draconic months deviated from their respective means in a range of -5.7 h to 6.9 h and ±3.4 h, respectively. The deviations of the anomalistic months from their mean range between -2.83 d and 0.97 d with the largest negative deviations occurring around the points of inflection in the curve that represents the departure of the synodic month from its mean. Based on the two successive passages of the Sun through the ascending node of the lunar equator plane, the time interval between them corresponds to 347.29 days, i.e., it is slightly longer than the mean draconic year of 346.62 days. We computed the local solar insolation as input to the multilayer-force restore method of Kramm et al. (2017) that is based on the local energy budget equation. Due to the need to spin up the distribution of the regolith temperature to equilibrium, analysis of the model results covers only the last 12 lunations starting January 15, 2010, 07:11 UT1. The predicted slab temperatures, T<sub>slab</sub>, considered as the realistic surface temperatures, follow the bolometric temperatures, T<sub>bol</sub>, acceptably. According to all 24 DLRE datasets related to the subsolar longitude ø<sub>ss</sub>, the global averages of the bolometric temperature amounts to T<sub>bol</sub>=201.1k± 0.6K. Based on the globally averaged emitted infrared radiation of F<sub>IR</sub>>=290.5W·m<sup>-2</sup>± 3.0W·m<sup>-2</sup> derived from the 24 DLRE datasets, the effective radiative temperature of the Moon is T<sub>e, M</sub>>=T<sub>bol>1/4</sub>=271.0k± 0.7K so that T<sub>bol</sub>>≅0.742T<sub>e, M</sub>. The DLRE observations suggest that in the case of rocky planets and their natural satellites, the globally averaged surface temperature is notably lower than the effective radiation temperature. They differ by a factor that depends on the astronomical parameters especially on the angular velocity of rotation.
文摘The variation of the temperature of the solar cell subjected to the incident global solar radiation along the local daytime in relation to its efficiency is studied. The heat balance equation is solved. The solution revealed that the cell temperature is a function of the maximum value of the daily incident global solar radiation qmax, the convection heat transfer coefficient (h), the optical, physical and the geometrical parameters of the cell. The temperature dependence of the short circuit current Isc, the dark saturation current Io, the open circuit voltage Voc, and the energy band gap Eg characterizing a Silicon solar cell is considered in evaluating the cell efficiency. Computations of the efficiency concerning operating conditions and astronomical locations (Egypt) as illustrative examples are given.
文摘The solar desalinator is a low cost installation and operation equipment that can contribute to tackling the problem of water shortages in the world.Because of the importance of this equipment,the present work has the objective to quantify the relation of the temperature of the water with the production of the equipment.For this,a compact desalinator with glass cover in square pyramidal form and a heating system controlled by a logic programmer was built.As a result,it was verified the efficiency of the logic controller as an auxiliary tool for experimental work and the relationship between temperature ranges and desalination production.
基金Funded by the National Natural Sience Foundation of China(No.50702041)the Wuhan Young Scientists Chenguang Plan(No.20091j0080)+1 种基金the Nippon Sheet Glass Foundation for Materials Scienceand Engineeringthe National Basic Research Program of China(2009CB939704)
文摘PTA sol was prepared using titanium tetrachloride (TiCl4), hydrogen peroxide (H2O2) and ammonia (NH3·H2O), and then stable anatase-TiO2 hydrosol was synthesized by refluxing the PTA sol at 100 ℃. It was found that TiO2 hydrosol can efficiently photo-degrade methyl orange (MO) under UV-vis light irradiation. Photocatalytic reactions at the temperature of 38 to 100 ℃ all followed pseudo-first-order rate law, and the temperature had a great effect on the reaction rate. The rate constants increased by about 6 times from 3.52×10^-4 to 2.17×10^-3 min^-1 when the temperature was adjusted from 38 to 100 ℃. Consequently, this photocatalytic course can be accelerated by using the infrared light of solar energy to increase the temperature of the photo-catalytic reaction, it should be a potential way to make full use of solar light in photocatalysis in practice.
基金Supported by the National Natural Science Foundation of China(No.51208355)
文摘The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘Solar cells and other renewable energy sources are crucial in today's world where sustainability and environmental consciousness is at peak.Because of this,creating the optimal capacity is a fair aim for the operators of such technologies.The transformation of solar energy into either electricity by means of photovoltaics or into useable fuel by means of photo electrochemical cells remained a primary objective for research organizations and development sectors.In this piece,we will take a look back at the history of solar cells and examine their progression through the generations.The significant aspects which have an impact on the solar cells' performance are also discussed.This article provides a comprehensive and in-depth overview of the important aspects that affect the solar cells' performance,as well as a discussion of the application of bio-inspired optimization algorithms to improve the parameters of solar cells.Reviewing critical factors and their optimization for solar cell performance enhancement is crucial.It helps identify key performance factors,understand limitations,and challenges,and identify effective optimization strategies.By evaluating trade-offs and synergies,it guides future research and informs industrial applications,leading to more efficient and sustainable solar cell technologies.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50836005, 50520140517 and 50506004)
文摘A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.
文摘Energy demand is increasing while we are facing a depletion of fossils fuels, the main source of energy production in the world. These last years, photovoltaic (PV) system technologies are growing rapidly among alternative sources of energy to contribute to mitigation of climate change. However, PV system efficiency researches operating under West African weather conditions are nascent. The first objective of this study is to investigate the sensitivity of common monocrystalline PV efficiency to local meteorological parameters (temperature, humidity, solar radiation) in two contrasted cities over West Africa: Niamey (Niger) in a Sahelian arid area and Abidjan (Cote d’Ivoire) in atropical humid area. The second objective is to quantify the effect of dust accumulation on PV efficiency in Niamey (Niger). The preliminary results show that PV efficiency is more sensitive to high temperature change especially under Niamey climate conditions (warmer than Abidjan) where high ambient temperatures above 33°C lead to an important decrease of PV efficiency. Increase of relative humidity induces a decrease of PV efficiency in both areas (Niamey and Abidjan). A power loss up to 12.46% is observed in Niamey after 21 days of dust accumulation.
文摘Solar thermal power is currently one of the important trends and research hotspots of solar energy. In present paper, basic physical model is proposed to investigate the solar thermal power, and the operating temperature is optimized to maximize the electricity generating efficiency. When the concentrated energy flux rises, the absorption efficiency of heat receiver will first increase and then decrease, while the increasing of flow velocity can improve the absorption performance. As the working temperature rising, the heat loss of infrared radiation and natural convection increases quickly, so the absorption efficiency obviously decreases, while the Carnot efficiency of the steam turbine cycle will rise. Because of the coupling effects of the heat absorption cycle and turbine cycle, the electricity generating efficiency will reach maximum with the optimal working temperature.
文摘Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar cells by means of simultaneous running test. This kind of comparison is of importance practically, because the comparison of only inherent characteristics cannot include environmental parameters such as temperature totally. It was concluded that both types of solar cells provided almost the same energy for one year. The amorphous silicon solar cell provided more energy in summer while the tandem solar cell was advantageous in winter. It is due to the fact that the decrease in energy conversion at the higher cell temperature is more noticeable in tandem solar cells.
文摘Solar powered cold water dispenser apparatus is fabricated and experimental results are shown in this work. The system contains solar panels, two low energy fans, water tank fabricated from clay (pottery), thermally sealed box, and pipes. Once these contents are connected together, testing was conducted on water temperatures at both ends. The preliminary results showed a drop in temperature of around 15℃. This is achieved by utilizing free power from the sun.
文摘The sensitivity of mono-crystalline solar PV module towards dust accumulation, ambient temperature, relative humidity, and cloud cover is investigated from May to August 2015 for Niamey’s environment. Two solar modules with the same characteristics have been used to carry out the impacts of the dust on the solar PV module. One of the modules is being cleaned every morning and the second one was used for monitoring the effect of dust accumulation onto the surface of the unclean module for May and June. The ambient temperature around the solar PV module was recorded at the same time with the output voltage and the output current to assess the impacts of ambient temperature on the PV conversion efficiency. In addition to these field test measurements, the solar radiation data measured in National Center of Solar Energy (CNES) of Niamey were also used. Also the relative humidity for the study area data obtained NASA power agro-climatology website was used. Results show that the dust accumulation has the greatest impact on the performance of the PV module followed by temperature, relative humidity and cloud cover. Exposing the module in 23 days has reduced the energy output by 15.29%. The power output and the conversion efficiency of the PV module have dropped by 2.6% and 0.49% respectively. The relative humidity also has reduced the energy output by 4.3 Wh/m2/day.