The studies on environmental effects of foreign trade and its spatial variations are helpful to design and implement environmental protection countermeasures.In order to eliminate the adverse effects of insufficient o...The studies on environmental effects of foreign trade and its spatial variations are helpful to design and implement environmental protection countermeasures.In order to eliminate the adverse effects of insufficient observation values on the accuracy of regression results and dynamic information quantity of fitting equation during empirical study,panel data of the mid-eastern provinces and cities of China from 1985 to 2007 were selected based on the adjustment of classical regression model in this paper.Panel unit root test and panel cointegration analysis method were applied to investigating the environmental effects of foreign trade and its spatial variations in the mid-eastern provinces and cities of China and its three groups divided by foreign trade dependence.The results show that all scale effects are positive,while all technical effects are negative and unable to counteract positive scale effects.Foreign trade development is regarded as an important cause for outstanding eco-environmental problems in the mid-eastern provinces and cities of China.Total effects and structural effects are significantly different among different groups because of spatial variations in environmental policies,export destinations,source of FDI,etc.Following the principle of′coordinating generality and considering differences comprehensively′,it is essential to issue a series of policies and countermeasures corresponding to differences in regional environmental effect of foreign trade,in order to coordinate the relationship between foreign trade development and eco-environment in each region.展开更多
By combining living trees and archaeological wood, the annual mean temperatures were reconstructed based on ring-width indices of the mid-eastern Tibetan Plateau for the past 2485 years. The climate variations reveale...By combining living trees and archaeological wood, the annual mean temperatures were reconstructed based on ring-width indices of the mid-eastern Tibetan Plateau for the past 2485 years. The climate variations revealed by the reconstruction indicate that there were four periods to have average tem- peratures similar to or even higher than that mean of 1970 to 2000 AD. A particularly notable rapid shift from cold to warm, we call it the "Eastern Jin Event", occurred from 348 AD to 413 AD. Calculation re- sults show that the temperature variations over the mid-eastern Tibetan Plateau are not only repre- sentative for large parts of north-central China, but also closely correspond to those of the entire Northern Hemisphere over long time scales. During the last 2485 years, the downfall of most major dynasties in China coincides with intervals of low temperature. Compared with the temperature records in other regions of China during the last 1000 years, this reconstruction from the Tibetan Plateau shows a significant warming trend after the 1950s.展开更多
The Kunlun Fault, an active fault on the border between the Bayan Har and Kunlun-Qaidam blocks, is one of the major left lateral strike-slip faults in the Tibetan Plateau. Previous research has not reached a consensus...The Kunlun Fault, an active fault on the border between the Bayan Har and Kunlun-Qaidam blocks, is one of the major left lateral strike-slip faults in the Tibetan Plateau. Previous research has not reached a consensus on agreeable slip rates along much of its length and the slip rate gradient along the eastern part, both of which play critical roles in a range of models for the eastward extrusion and thickened crust of the Tibetan Plateau. New slip rates have been determined at sites along the eastern part of the Kunlun Fault by dating deposits and measuring atop displaced fluvial terrace risers. Field investigations and interpretation of satellite images reveal geometrical features of the fault and the late Quaternary offset, new earthquake ruptures and surface-rupturing segmentation, from which long-term slip rates and earthquake recurrence intervals on the fault are estimated. The tectonic geomorphology method has determined that the long-term horizontal slip rates on the Tuosuohu, Maqin and Ma- qu segments from west to east are 11.2±1, 9.3±2, and 4.9±1.3 mm/a while their vertical slip rates are 1.2±0.2, 0.7±0.1, and 0.3 mm/a in the late Quaternary. Results indicate that the slip rates regularly decrease along the eastern -300 km of the fault from 〉10 to 〈5 mm/a. This is consistent with the decrease in the gradient such that at the slip rate break point is at the triple point intersection with the transverse fault, which in turn is transformed to the Awancang Fault. The vector decomposition for this tectonic transformation shows that the western and eastern branches of the Awancang Fault fit the slip-partitioning mode. The slip rate of the southwestern wall is 4.6 mm/a relative to the northeastern wall and the slip direction is 112.1°. The mid-eastern part of the Kunlun Fault can be divided into three independent segments by the A'nyemaqen double restraining bend and the Xigongzhou intersection zone, which compose the surface rupture segmentation indicators for themselves as well as the ending point of the 1937 M7.5 Tuosuohu earthquake. The average recurrence interval of the characteristic earthquakes are estimated to be 500-1000 a, respectively. The latest earthquake ruptures occurred in AD 1937 on the western Tuosuohu segment, as compared to -514-534 a BP on the Maqin segment, and -1055 to 1524 a BP on the Maqu segment. This may indicate a unidirectional migration for surface rupturing earthquakes along the mid-eastern Kunlun Fault related to stress triggered between these segments. Meanwhile, the long-term slip rate is obtained through the single event offset and the recurrence interval, which turn out to be the same results as those determined by the offset tectonic geomorphology method, i.e., the decreasing gradient corresponds to the geometrical bending and the fault's intersection with the transverse fault. Therefore, the falling slip rate gradient of the mid-eastern Kunlun Fault is mainly caused by eastward extension of the fault and its intersection with the transverse fault.展开更多
基金Under the auspices of Major State Basic Research Development Program(No.2007FY110300)Soft Science Research Project of Chongqing Science&Technology Commission(No.CSTC2011cx-rkxA0120)Science and Technology Research Project of Chongqing(No.CSTC,2009CB2015)
文摘The studies on environmental effects of foreign trade and its spatial variations are helpful to design and implement environmental protection countermeasures.In order to eliminate the adverse effects of insufficient observation values on the accuracy of regression results and dynamic information quantity of fitting equation during empirical study,panel data of the mid-eastern provinces and cities of China from 1985 to 2007 were selected based on the adjustment of classical regression model in this paper.Panel unit root test and panel cointegration analysis method were applied to investigating the environmental effects of foreign trade and its spatial variations in the mid-eastern provinces and cities of China and its three groups divided by foreign trade dependence.The results show that all scale effects are positive,while all technical effects are negative and unable to counteract positive scale effects.Foreign trade development is regarded as an important cause for outstanding eco-environmental problems in the mid-eastern provinces and cities of China.Total effects and structural effects are significantly different among different groups because of spatial variations in environmental policies,export destinations,source of FDI,etc.Following the principle of′coordinating generality and considering differences comprehensively′,it is essential to issue a series of policies and countermeasures corresponding to differences in regional environmental effect of foreign trade,in order to coordinate the relationship between foreign trade development and eco-environment in each region.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40525004, 40599420, 40890051)National Basic Research Program of China (Grant Nos. 2007BAC30B00, 2004CB720200, 2006CB400503)the Swedish International Development Cooperation Agency (SIDA, Grant to Hans W. Linderholm)
文摘By combining living trees and archaeological wood, the annual mean temperatures were reconstructed based on ring-width indices of the mid-eastern Tibetan Plateau for the past 2485 years. The climate variations revealed by the reconstruction indicate that there were four periods to have average tem- peratures similar to or even higher than that mean of 1970 to 2000 AD. A particularly notable rapid shift from cold to warm, we call it the "Eastern Jin Event", occurred from 348 AD to 413 AD. Calculation re- sults show that the temperature variations over the mid-eastern Tibetan Plateau are not only repre- sentative for large parts of north-central China, but also closely correspond to those of the entire Northern Hemisphere over long time scales. During the last 2485 years, the downfall of most major dynasties in China coincides with intervals of low temperature. Compared with the temperature records in other regions of China during the last 1000 years, this reconstruction from the Tibetan Plateau shows a significant warming trend after the 1950s.
基金supported by National Natural Science Foundation of China (Grant Nos. 40821160550 and 40974057)International Scientific Joint Project of China (Grant No. 2009DFA21280)
文摘The Kunlun Fault, an active fault on the border between the Bayan Har and Kunlun-Qaidam blocks, is one of the major left lateral strike-slip faults in the Tibetan Plateau. Previous research has not reached a consensus on agreeable slip rates along much of its length and the slip rate gradient along the eastern part, both of which play critical roles in a range of models for the eastward extrusion and thickened crust of the Tibetan Plateau. New slip rates have been determined at sites along the eastern part of the Kunlun Fault by dating deposits and measuring atop displaced fluvial terrace risers. Field investigations and interpretation of satellite images reveal geometrical features of the fault and the late Quaternary offset, new earthquake ruptures and surface-rupturing segmentation, from which long-term slip rates and earthquake recurrence intervals on the fault are estimated. The tectonic geomorphology method has determined that the long-term horizontal slip rates on the Tuosuohu, Maqin and Ma- qu segments from west to east are 11.2±1, 9.3±2, and 4.9±1.3 mm/a while their vertical slip rates are 1.2±0.2, 0.7±0.1, and 0.3 mm/a in the late Quaternary. Results indicate that the slip rates regularly decrease along the eastern -300 km of the fault from 〉10 to 〈5 mm/a. This is consistent with the decrease in the gradient such that at the slip rate break point is at the triple point intersection with the transverse fault, which in turn is transformed to the Awancang Fault. The vector decomposition for this tectonic transformation shows that the western and eastern branches of the Awancang Fault fit the slip-partitioning mode. The slip rate of the southwestern wall is 4.6 mm/a relative to the northeastern wall and the slip direction is 112.1°. The mid-eastern part of the Kunlun Fault can be divided into three independent segments by the A'nyemaqen double restraining bend and the Xigongzhou intersection zone, which compose the surface rupture segmentation indicators for themselves as well as the ending point of the 1937 M7.5 Tuosuohu earthquake. The average recurrence interval of the characteristic earthquakes are estimated to be 500-1000 a, respectively. The latest earthquake ruptures occurred in AD 1937 on the western Tuosuohu segment, as compared to -514-534 a BP on the Maqin segment, and -1055 to 1524 a BP on the Maqu segment. This may indicate a unidirectional migration for surface rupturing earthquakes along the mid-eastern Kunlun Fault related to stress triggered between these segments. Meanwhile, the long-term slip rate is obtained through the single event offset and the recurrence interval, which turn out to be the same results as those determined by the offset tectonic geomorphology method, i.e., the decreasing gradient corresponds to the geometrical bending and the fault's intersection with the transverse fault. Therefore, the falling slip rate gradient of the mid-eastern Kunlun Fault is mainly caused by eastward extension of the fault and its intersection with the transverse fault.