This study explores the model performance of the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating precipitation extremes over the mid–high latitudes of Asia,as compared with predecessor models in the...This study explores the model performance of the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating precipitation extremes over the mid–high latitudes of Asia,as compared with predecessor models in the previous phase,CMIP5.Results show that the multimodel ensemble median generally outperforms the individual models in simulating the climate means of precipitation extremes.The CMIP6 models possess a relatively higher capability in this respect than the CMIP5 models.However,discrepancies also exist between models and observation,insofar as most of the simulated indices are positively biased to varying degrees.With respect to the temporal performance of indices,the majority are overestimated at most time points,along with large uncertainty.Therefore,the capacity to simulate the interannual variability needs to be further improved.Furthermore,pairwise and multimodel ensemble comparisons were performed for 12 models to evaluate the performance of individual models,revealing that most of the new-version models are better than their predecessors,albeit with some variance in the metrics amongst models and indices.展开更多
Spodoptera frugiperda (J.E.Smmith) is one of the major migratory pests warned by the Food and Agriculture Organization (FAO).It has been successfully invaded sugarcane and corn in Jinggu,Longchuan,Gengma,Menghai,Yingj...Spodoptera frugiperda (J.E.Smmith) is one of the major migratory pests warned by the Food and Agriculture Organization (FAO).It has been successfully invaded sugarcane and corn in Jinggu,Longchuan,Gengma,Menghai,Yingjiang,Lancang of Yunan Province,China.In view of the great variety of hosts,wide range of habitats and strong migration ability,S.frugiperda has the potential of causing catastrophic threats to sugarcane production.In this paper,we made a systematic introduction to the morphological and biological characteristics of S.frugiperda,analyzed its occurrence situations and occurrence trends in Yunnan of China and other countries around the world,and proposed the control strategies and measures of ecological regulation and control,natural enemies protection and utilization,biological control,pesticide control and adults trapping based on the outbreak characteristics of S.frugiperda and the actual sugarcane production in low latitude plateau areas.展开更多
The atmospheric circulation over the mid-high latitudes in Asia has an important influence on regional climate,yet its long-term variation has not been fully explored.The main task of this study is to reveal the inter...The atmospheric circulation over the mid-high latitudes in Asia has an important influence on regional climate,yet its long-term variation has not been fully explored.The main task of this study is to reveal the interdecadal variation features of summer atmospheric circulation over Asian mid-high latitudes in recent decades.The results show that the atmospheric circulation over mid-high latitudes of Asia has stronger interdecadal fluctuations than that over low latitudes and one significant change center appears near Lake Baikal.It is found that the atmospheric circulation near Lake Baikal has a significant interdecadal change around 1996 and a deep anomalous anticyclonic circulation has been controlling this region since then,which contributes to the significant increase in the surface temperature near Lake Baikal since 1997 and makes the region a remarkable warming center in Asia in recent 40 years.During 1997-2015,the pattern of less precipitation in the north and more precipitation in the south of east China is closely related to the anomalous anticyclonic circulation near Lake Baikal.Especially,this anomalous circulation near Lake Baikal has been found to contribute to the obvious interdecadal decrease of the precipitation in northeast China and north China near1997.The sea surface temperature(SST)of northwestern Atlantic is an important influence factor to the interdecadal change in the atmospheric circulation near Lake Baikal around 1996.展开更多
This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(lan...This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.展开更多
Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess f...Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess future changes in surface air temperature,precipitation and Köppen-Trewartha(K-T)climate types in Northern Asia under the 1.5-4℃global warming targets.RegCM4 is driven by five CMIP5 global models over an East Asia domain at a grid spacing of 25 km.Validation of the present day(1986-2005)simulations shows that the ensembles of RegCM4(ensR)and driving GCMs(ensG)reproduce the major characters of the observed temperature,precipitation and K-T climate zones reasonably well.Greater and more realistic spatial detail is found in RegCM4 compared to the driving GCMs.A general warming and overall increases in precipitation are projected over the region,with these changes being more pronounced at higher warming levels.The projected warming by ensR shows different spatial patterns,and is in general lower,compared to ensG in most months of the year,while the percentage increases of precipitation are maximum during the cold months.The future changes in K-T climate zones are characterized by a substantial expansion of Dc(temperature oceanic)and retreat of Ec(sub-arctic continental)over the region,reaching∼20%under the 4℃warming level.The most notable change in climate types in ensR is found over Japan(∼60%),followed by Southern Siberia,Mongolia,and the Korean Peninsula(∼40%).The largest change in the K-T climate types is found when increasing from 2 to 3℃.The results will help to better assess the impacts of climate change and in implementation of appropriate adaptation measures over the region.展开更多
NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the ...NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation (ISO; 30-60 days) in the mid-high latitude meridional circulation of the upper troposphere over East Asia. The abrupt transition from drought to flood occurs in early June. The first two recovered fields of the complex empirical orthogonal function show that northward-propagating westerlies from low latitudes converge with southward-propagating westerlies from high latitudes over the mid-low reaches of the Yangtze River (MLRYR) in mid late May. The timing of this convergence corresponds to the flood period in early-mid June. The ISO index is significantly and positively correlated with rainfall over the MLRYR. During the dry phase (before the transition), the upper troposphere over the MLRYR is characterized by cyclonic flow, easterly winds, and convergence. The regional circulation is dominated by a wave train with a cyclone over east of Lake Baikal, an anticyclone over northern China, and a cyclone over the MLRYR. During the wet phase, the situation is reversed. The configuration of the wave train during the dry phase favors the southward propagation of westerly wind disturbances, while the configuration of the wave train during the wet phase favors the development and maintenance of a pumping effect and sustained ascending motions over the MLRYR.展开更多
Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circul...Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circulation for the prevailing period over Eurasian mid-high latitude in boreal summer(May-August) in terms of empirical orthogonal function(EOF),linear regression,and phase analysis and so on.We found that the dominant periods of the low-frequency circulation are 10-30 days and it clearly shows meridional(southward) and zonal(westward) propagation features at the middle troposphere(500 hPa).The average zonal speed of the 10-30 days low-frequency oscillation(LFO) is about 9-10 longitudes per day.Further analysis shows that the southernmost part of the polar vortex in the northern hemisphere exhibits westward clockwise rotation in the eastern hemisphere in boreal summer.Also,the southernmost tips of 5400 and 5500 gpm contours,which indicate the site of the major trough in the eastern hemisphere,obviously move westwards.The southernmost tip of 5500 gpm contour line propagates westwards at the speed of about 9-10 longitudes per day,which is consistent with the mean zonal speed of the westward propagation of the low-frequency circulation.Moreover,the 10-30-day LFO-related cold air also shows west propagation feature with respect to LFO phases.The westward propagation of the LFO is the low-frequency-scale embodiment of the clockwise rotation of polar vortex.The cold air activities closely related to polar vortex or to ridge-trough system activities is the essential circulation of 10-30 days LFO circulation over the Eurasian mid-high latitude in boreal summer.展开更多
【目的】探讨低纬度高海拔地区纽荷尔脐橙果实生长发育规律及其与气温、降水量和光照等气象因子的相关性,为广西低纬度高海拔地区纽荷尔脐橙高产优质栽培提供依据。【方法】以广西百色市靖西县南坡乡荷朗村种植的纽荷尔脐橙品种为试材,...【目的】探讨低纬度高海拔地区纽荷尔脐橙果实生长发育规律及其与气温、降水量和光照等气象因子的相关性,为广西低纬度高海拔地区纽荷尔脐橙高产优质栽培提供依据。【方法】以广西百色市靖西县南坡乡荷朗村种植的纽荷尔脐橙品种为试材,定期测定其果实纵、横径,运用Logistic方程模拟果实体积增长指标与生长时间的关系式,分析果实体积增长与气温、降水量和光照的相关性。【结果】纽荷尔脐橙果实纵、横径在果实整个生长过程中出现3个明显的生长高峰期,呈单S形曲线增长;Logistic拟合模型的相关系数均达极显著差异水平(P〈0.01)。8月下旬至9月上旬是纽荷尔果实生长的最大效能期;4~11月果实逐月净生长量与气温、降水量和光照变化呈显著正相关(P〈0.05)。低纬度高海拔地区纽荷尔脐橙表现果大,单果均重278.7g、果形指数0.96、可溶性固形物含量11.15%、可滴定酸含量3.58 g/100 m L、固酸比3.10∶1、糖酸比2.90∶1。【结论】广西低纬度高海拔地区纽荷尔脐橙果实生长动态变化可运用Logistic方程模型拟合,其果实的生长发育与气温、降水量和光照有密切的相关性。生产中可在纽荷尔脐橙果实迅速膨大时期(8~9月)利用当地有利的气温、降水量和光照等气象条件促进果实更好地生长发育,改善果实品质。展开更多
基金jointly supported by the National Natural Science Foundation of China grant numbers 41991284 and41922034the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA23090102the National Key Research and Development Program of China grant number 2016YFA0602401。
文摘This study explores the model performance of the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating precipitation extremes over the mid–high latitudes of Asia,as compared with predecessor models in the previous phase,CMIP5.Results show that the multimodel ensemble median generally outperforms the individual models in simulating the climate means of precipitation extremes.The CMIP6 models possess a relatively higher capability in this respect than the CMIP5 models.However,discrepancies also exist between models and observation,insofar as most of the simulated indices are positively biased to varying degrees.With respect to the temporal performance of indices,the majority are overestimated at most time points,along with large uncertainty.Therefore,the capacity to simulate the interannual variability needs to be further improved.Furthermore,pairwise and multimodel ensemble comparisons were performed for 12 models to evaluate the performance of individual models,revealing that most of the new-version models are better than their predecessors,albeit with some variance in the metrics amongst models and indices.
基金Supported by the Sugar Crop Research System(CARS-170303)the Training Project of Yunling Industry and Technology Leading Talents(2018LJRC56)the Special Fund of Agricultural Industry Research System in Yunnan Province
文摘Spodoptera frugiperda (J.E.Smmith) is one of the major migratory pests warned by the Food and Agriculture Organization (FAO).It has been successfully invaded sugarcane and corn in Jinggu,Longchuan,Gengma,Menghai,Yingjiang,Lancang of Yunan Province,China.In view of the great variety of hosts,wide range of habitats and strong migration ability,S.frugiperda has the potential of causing catastrophic threats to sugarcane production.In this paper,we made a systematic introduction to the morphological and biological characteristics of S.frugiperda,analyzed its occurrence situations and occurrence trends in Yunnan of China and other countries around the world,and proposed the control strategies and measures of ecological regulation and control,natural enemies protection and utilization,biological control,pesticide control and adults trapping based on the outbreak characteristics of S.frugiperda and the actual sugarcane production in low latitude plateau areas.
基金Innovation Team Project by Institute of Plateau Meteorology,China Meteorological Administration,Chengdu(BROP202043)National Natural Science Foundation of China(41775084)Key Special Projects of National Key R&D Program of China(2018YFC1505706)。
文摘The atmospheric circulation over the mid-high latitudes in Asia has an important influence on regional climate,yet its long-term variation has not been fully explored.The main task of this study is to reveal the interdecadal variation features of summer atmospheric circulation over Asian mid-high latitudes in recent decades.The results show that the atmospheric circulation over mid-high latitudes of Asia has stronger interdecadal fluctuations than that over low latitudes and one significant change center appears near Lake Baikal.It is found that the atmospheric circulation near Lake Baikal has a significant interdecadal change around 1996 and a deep anomalous anticyclonic circulation has been controlling this region since then,which contributes to the significant increase in the surface temperature near Lake Baikal since 1997 and makes the region a remarkable warming center in Asia in recent 40 years.During 1997-2015,the pattern of less precipitation in the north and more precipitation in the south of east China is closely related to the anomalous anticyclonic circulation near Lake Baikal.Especially,this anomalous circulation near Lake Baikal has been found to contribute to the obvious interdecadal decrease of the precipitation in northeast China and north China near1997.The sea surface temperature(SST)of northwestern Atlantic is an important influence factor to the interdecadal change in the atmospheric circulation near Lake Baikal around 1996.
基金supported by the National Natural Science Foundation of China(41790474)the State Oceanic Administration International Cooperation Program on Global Change and Air–Sea Interactions(GASI-IPOVAI-03)
文摘This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.
基金This research was jointly supported by the National Natural Science Foundation of China(41991284)the Science and Technology Project of Education Department of Jiangxi province(GJJ2201249).
文摘Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess future changes in surface air temperature,precipitation and Köppen-Trewartha(K-T)climate types in Northern Asia under the 1.5-4℃global warming targets.RegCM4 is driven by five CMIP5 global models over an East Asia domain at a grid spacing of 25 km.Validation of the present day(1986-2005)simulations shows that the ensembles of RegCM4(ensR)and driving GCMs(ensG)reproduce the major characters of the observed temperature,precipitation and K-T climate zones reasonably well.Greater and more realistic spatial detail is found in RegCM4 compared to the driving GCMs.A general warming and overall increases in precipitation are projected over the region,with these changes being more pronounced at higher warming levels.The projected warming by ensR shows different spatial patterns,and is in general lower,compared to ensG in most months of the year,while the percentage increases of precipitation are maximum during the cold months.The future changes in K-T climate zones are characterized by a substantial expansion of Dc(temperature oceanic)and retreat of Ec(sub-arctic continental)over the region,reaching∼20%under the 4℃warming level.The most notable change in climate types in ensR is found over Japan(∼60%),followed by Southern Siberia,Mongolia,and the Korean Peninsula(∼40%).The largest change in the K-T climate types is found when increasing from 2 to 3℃.The results will help to better assess the impacts of climate change and in implementation of appropriate adaptation measures over the region.
基金Supported by the National Natural Science Foundation of China (41221064 and 40875052)China Meteorological Administration Special Public Welfare Research Fund (GYHY200906017 and GYHY201006020)Basic Research Fund of the Chinese Academy of Meteorological Sciences (2010Z003)
文摘NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation (ISO; 30-60 days) in the mid-high latitude meridional circulation of the upper troposphere over East Asia. The abrupt transition from drought to flood occurs in early June. The first two recovered fields of the complex empirical orthogonal function show that northward-propagating westerlies from low latitudes converge with southward-propagating westerlies from high latitudes over the mid-low reaches of the Yangtze River (MLRYR) in mid late May. The timing of this convergence corresponds to the flood period in early-mid June. The ISO index is significantly and positively correlated with rainfall over the MLRYR. During the dry phase (before the transition), the upper troposphere over the MLRYR is characterized by cyclonic flow, easterly winds, and convergence. The regional circulation is dominated by a wave train with a cyclone over east of Lake Baikal, an anticyclone over northern China, and a cyclone over the MLRYR. During the wet phase, the situation is reversed. The configuration of the wave train during the dry phase favors the southward propagation of westerly wind disturbances, while the configuration of the wave train during the wet phase favors the development and maintenance of a pumping effect and sustained ascending motions over the MLRYR.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.40875052&41221064)the Calling Project of China(Grant Nos.GYHY200906017&GYHY201006020)the Basic Research Foundation of CAMS(Grant No.2010Z003)
文摘Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circulation for the prevailing period over Eurasian mid-high latitude in boreal summer(May-August) in terms of empirical orthogonal function(EOF),linear regression,and phase analysis and so on.We found that the dominant periods of the low-frequency circulation are 10-30 days and it clearly shows meridional(southward) and zonal(westward) propagation features at the middle troposphere(500 hPa).The average zonal speed of the 10-30 days low-frequency oscillation(LFO) is about 9-10 longitudes per day.Further analysis shows that the southernmost part of the polar vortex in the northern hemisphere exhibits westward clockwise rotation in the eastern hemisphere in boreal summer.Also,the southernmost tips of 5400 and 5500 gpm contours,which indicate the site of the major trough in the eastern hemisphere,obviously move westwards.The southernmost tip of 5500 gpm contour line propagates westwards at the speed of about 9-10 longitudes per day,which is consistent with the mean zonal speed of the westward propagation of the low-frequency circulation.Moreover,the 10-30-day LFO-related cold air also shows west propagation feature with respect to LFO phases.The westward propagation of the LFO is the low-frequency-scale embodiment of the clockwise rotation of polar vortex.The cold air activities closely related to polar vortex or to ridge-trough system activities is the essential circulation of 10-30 days LFO circulation over the Eurasian mid-high latitude in boreal summer.
文摘【目的】探讨低纬度高海拔地区纽荷尔脐橙果实生长发育规律及其与气温、降水量和光照等气象因子的相关性,为广西低纬度高海拔地区纽荷尔脐橙高产优质栽培提供依据。【方法】以广西百色市靖西县南坡乡荷朗村种植的纽荷尔脐橙品种为试材,定期测定其果实纵、横径,运用Logistic方程模拟果实体积增长指标与生长时间的关系式,分析果实体积增长与气温、降水量和光照的相关性。【结果】纽荷尔脐橙果实纵、横径在果实整个生长过程中出现3个明显的生长高峰期,呈单S形曲线增长;Logistic拟合模型的相关系数均达极显著差异水平(P〈0.01)。8月下旬至9月上旬是纽荷尔果实生长的最大效能期;4~11月果实逐月净生长量与气温、降水量和光照变化呈显著正相关(P〈0.05)。低纬度高海拔地区纽荷尔脐橙表现果大,单果均重278.7g、果形指数0.96、可溶性固形物含量11.15%、可滴定酸含量3.58 g/100 m L、固酸比3.10∶1、糖酸比2.90∶1。【结论】广西低纬度高海拔地区纽荷尔脐橙果实生长动态变化可运用Logistic方程模型拟合,其果实的生长发育与气温、降水量和光照有密切的相关性。生产中可在纽荷尔脐橙果实迅速膨大时期(8~9月)利用当地有利的气温、降水量和光照等气象条件促进果实更好地生长发育,改善果实品质。