With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,...With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.展开更多
To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders ...To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.展开更多
[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, ...[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, A. spinula, A. Caespitosa, A. sichuanensis, A. ebianensis, A. retusa, A. guizhouensis and A. liboensis were subjected to drying, pulverization and sieving and then directly determined for near- infrared reflectance spectrums; and the plants in this genus were classified by clus- ter analysis and principal component analysis (PCA). [Result] The near-infrared re- flectance spectrums of the 23 batches of Guizhou Aspidistra plants showed very high similarity. The spectrums were processed by first derivative method, and the spectral range of 4 000-7 500 cm-1 was selected as the analytical range. Cluster analysis and PCA were employed to mass spectrum variables of plants in Aspidis- tra, fewer new variables became the linear combination of primary variables, and small differences between different varieties were enlarged, thereby facilitating intu- itive classification of plants in this genus. [Conclusion] Near-infrared diffuse re- flectance spectroscopy is nondestructive and rapid for determination of solid sam- pies, and provides a new method for the classification of Guizhou Aspidistra plants combined by information processing techniques.展开更多
[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were cho...[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.展开更多
Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi...Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.展开更多
In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice...In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.展开更多
A compact prototype based on mid-infrared wavelength modulation spectroscopy(WMS)is developed for the simul-taneous monitoring of NO,NO2,and NH3 in the urban area.Three quantum cascade lasers(QCLs)with central fre...A compact prototype based on mid-infrared wavelength modulation spectroscopy(WMS)is developed for the simul-taneous monitoring of NO,NO2,and NH3 in the urban area.Three quantum cascade lasers(QCLs)with central frequencies around 1900.0 cm^-1,1600.0 cm^-1,and 1103.4 cm^-1are used for NO,NO2,and NH3detections,respectively,by timedivision multiplex.An open-path multi-pass cell of 60-m optical path length is applied to the instrument for high sensitivity and reducing the response time to less than 1 s.The prototype achieves a sub-ppb detection limit for all the three target gases with an average time of about 100 s.The instrument is installed in the Jiangsu environmental monitoring center to conduct performance tests on ambient air.Continuous 24-hour measurements show good agreement with the results of a reference instrument based on the chemiluminescence technique.展开更多
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r...Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems.展开更多
Using 128 bulk-kernel samples of inbred lines and hybrids, a study was conducted toinvestigate the feasibility and method of measuring protein and starch contents inintact seeds of maize by near infrared reflectance s...Using 128 bulk-kernel samples of inbred lines and hybrids, a study was conducted toinvestigate the feasibility and method of measuring protein and starch contents inintact seeds of maize by near infrared reflectance spectroscopy (NIRS). The chemometricalgorithms of partial least square (PLS) regression was used. The results indicated thatthe calibration models developed by the spectral data pretreatment of firstderivative+multivariate scattering correction within the spectral region of 10000-4000cm-1, and first derivative + straight line subtraction in 9000-4000cm-1 were thebest for protein and starch, respectively. All these models yielded coefficients ofdetermination of calibration (R2cal) above 0.97, while R2cv and R2val of cross and externalvalidation ranged from 0.92 to 0.95, respectively; however, the root of mean squareerrors of calibration, cross and external validation (RMSEE, RMSECV and RMSEP) werebelow 1(ranged 0.3-0.7),respectively. This study demonstrated that it is feasible touse NIRS as a rapid, accurate, and none-destructive technique to predict protein andstarch contents of whole kernel in the maize quality improvement program.展开更多
Thermal maturity is commonly assessed by various geochemical screening methods(e.g.,pyrolysis and organic petrology).In this contribution,we attempt to establish an alternative approach to estimating thermal maturity ...Thermal maturity is commonly assessed by various geochemical screening methods(e.g.,pyrolysis and organic petrology).In this contribution,we attempt to establish an alternative approach to estimating thermal maturity with Raman spectroscopy,using 24 North American oil shale samples with thermal maturity data generated by vitrinite reflectance(VRo%)and pyrolysis(Tmax)-based maturity calculation(VRe%).The representative shale samples are from the Haynesville(East Texas),Woodford(West Texas),Eagle Ford and Pearsall(South Texas)Formations,as well as Gothic,Mancos,and Niobrara Formation shales(all from Colorado).The Raman spectra of disordered carbonaceous matter(D1 and G bands separation)of these samples were directly obtained from the rock chips without prior sample preparation.Using the Gaussian and Lorentzian distribution approach,thermal maturities from VR were correlated with carbon G and D1.We found that the Raman band separation(RBS)displayed a better correlation for equivalent VRe%than vitrinite reflectance VRo%.The RBS(D1–G)distance versus total organic carbon,free hydrocarbons from thermal extraction(S1),and the remaining hydrocarbon generating potential(S2)indicate that the RBS(D1–G)distance is also related to kerogen type.Data presented here from three methods of maturity determination of shale demonstrate that Raman spectroscopy is a quick and valid approach to thermal maturity assessment.展开更多
Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Se...Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.展开更多
Nitrogen content is an important parameter for petroleum refining processes. The combined use of mid-infrared attenuated total reflection spectroscopy and multivariate calibration allows accurate determination of nitr...Nitrogen content is an important parameter for petroleum refining processes. The combined use of mid-infrared attenuated total reflection spectroscopy and multivariate calibration allows accurate determination of nitrogen content in petroleum and its products. The calibration models of nitrogen content in crude oils have been established by partial least squares (PLS) method. The results predicted by this method were very close to those determined by standard methods. Compared with standard methods, this method is provided with advantages such as high-speed, simplicity and good-repeat- ability without any needs for pretreatment.展开更多
Background: The ability of near-infrared reflectance spectroscopy(NIRS) to determine the digestible energy(DE)and metabolizable energy(ME) content of corn fed to growing pigs was tested. One hundred and sevente...Background: The ability of near-infrared reflectance spectroscopy(NIRS) to determine the digestible energy(DE)and metabolizable energy(ME) content of corn fed to growing pigs was tested. One hundred and seventeen corn samples, comprising different planting regions and varieties were collected from all over China in a three-year period. The samples were randomly split into a calibration set(n = 88) and a validation set(n = 29). The actual and calculated DE and ME content of the corn samples was determined by digestion-metabolism experiments and the prediction equations of Noblet and Perez(J Anim Sci. 71:3389–98,1993). The samples were then subjected to NIRS scanning and calibrations were performed by the modified partial least square(MPLS) regression method based on77 different spectral pre-treatments. The NIRS equations based on the actually determined and calculated DE and ME were built separately and then validated using validation samples.Results: The NIRS equations obtained from actually determined DE, the coefficient of determination for calibration(RSQcal), cross-validation(R^2CV), and validation(RSQv) were 0.89, 0.87 and 0.86, and these values for determined ME were 0.87, 0.86 and 0.86. For the NIRS equations built from calculated DE, the RSQcal, R^2CV, and RSQvvalues were 0.88, 0.85 and 0.84, and these values for calculated ME were 0.86, 0.84 and 0.82. Except for the equation based on calculated ME(RPD_v= 2.38, 〈 2.50), the other three equations built from actually determined energy and calculated DE produced good prediction performance(RPD_vranging from 2.53 to 2.69, 〉 2.50) when applied to validation samples.Conclusion: These results indicate that NIRS can be used as a quantitative method for the rapid determination of the available energy in corn fed to growing pigs, and the NIRS equations based on the actually determined energy produced better predictive performance than those built from calculated energy values.展开更多
[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drou...[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drought resistance were selected and were classified according to their drought resistance grades determined by the Technical Specification of Identification and Evaluation for Drought Resistance in Wheat (GB/T 21127-2007). In addition, the harvested wheat seed samples were spectrally analyzed with FOSS NIRSystems5000 near-infrared spectrum analyzer for grain quality (full spectrum analyzer) and then the forecasted regression equations were established. [Result] After the establishment of a database and validation, dis- criminated functions were obtained. The determination coefficient (RSQ) and coeffi- cients of determination for cross validation (1-VR) in the discriminant function built with seed samples from water stress area were 0.846 0 and 0.781 8, respectively, which indicated that the consistency between drought resistance and spectral charac- teristics in wheat varieties was good, and there was high correlation between the near-infrared diffuse reflectance spectra of seeds and the drought resistance in wheat. [Conclusiou] Under water stress condition, it is feasible to establish a conve- nient, rapid and no-damage identification system for the drought resistance in wheat by using the near-infrared diffuse reflectance spectrum technique to scan wheat seeds.展开更多
Noninvasive,glucose-monitoring technologies using infrared spectroscopy that have been studied typically require a calibration process that involves blood collection,which renders the methods somewhat invasive.We deve...Noninvasive,glucose-monitoring technologies using infrared spectroscopy that have been studied typically require a calibration process that involves blood collection,which renders the methods somewhat invasive.We develop a truly noninvasive,glucose-monitoring technique using midinfrared spectroscopy that does not require blood collection for calibration by applying domain adaptation(DA)using deep neural networks to train a model that associates blood glucose concentration with mid-infrared spectral data without requiring a training dataset labeled with invasive blood sample measurements.For realizing DA,the distribution of unlabeled spectral data for calibration is considered through adversarial update during training networks for regression to blood glucose concentration.This calibration improved the correlation coeffcient between the true blood glucose concentrations and predicted blood glucose concentrations from 0.38 to 0.47.The result indicates that this calibration technique improves prediction accuracy for mid-infrared glucose measurements without any invasively acquired data.展开更多
Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mod...Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mode in the wavelength range of 800-2500 nm. Wines (n=90) were randomly split into two sets, calibration set (n=54) and validation set (n=36). Discriminant analysis models were developed using BP neural network and discriminant partial least-squares discriminant analysis (PLS-DA). The prediction performance of calibration models in different wavelength range was also investigated. BP neural network models and PLS-DA models correctly classified 100% of the wines in calibration set. When used to predict wines in validation set, BP neural network models correctly classified 100%, 81.8%, and 90.9% of the wines from Changli, Huailai, and Yantai respectively, and PLS-DA models correctly classified 100% of all samples. The results demonstrated that NIRS could be used to discriminate Chinese grape wines as a rapid and reliable method.展开更多
NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63% and 14.16% (wet basis) and the moisture concentration was verified usi...NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63% and 14.16% (wet basis) and the moisture concentration was verified using a standard oven method. Samples from various moisture levels were separated into two groups, as calibration and validation sets. NIR absorption spectral data from 400 nm to 2500 nm with 0.5 nm intervals were collected using pellets within the calibration and validation sample sets. Spectral wavelength ranges were taken as independent variables and the MC of the pellets as the dependent variable for the analysis. Measurements were obtained on 30 replicates within each moisture level. Partial Least Square (PLS) analysis was performed on both raw and preprocessed spectral data of calibration set to determine the best calibration model based on Standard Error of Calibration (SEC) and coefficient of multiple determinations (R2). The PLS model that yielded the best fit was used to predict the moisture concentration of validation group pellets. Relative Percent Deviation (RPD) and Standard Error of Prediction (SEP) were calculated to validate goodness of fit of the prediction model. Baseline and Multiple Scatter Corrected (MSC) reflectance spectra with 1st derivative model gave the highest RPD value of 4.46 and R2 of 0.95. Also it’s SEP (0.670) and RMSEP (0.782) were less than the other models those had RPD value more than 3.0 with less number of factors. Therefore, this model was selected as the best model for moisture content prediction of wood pellets.展开更多
The reflectance spectrun has been widely adopted to extract diagnosis information of human tissue because it possesses the advantages of noninvasive and rapidity.The external pressure brought by fiber optic probe may ...The reflectance spectrun has been widely adopted to extract diagnosis information of human tissue because it possesses the advantages of noninvasive and rapidity.The external pressure brought by fiber optic probe may influence the accuracy of measurement.In this paper,a sys-tematic study is focused on the effects of probe pressure on intrinsic changes of water and scattering particles in tissue.According to the biphasic nonlinear mixture model,the pressure modulated reflectance spectrum of both in vitro and in vivo tissue is measured and processed with second-derivation.The results indicate that the variations of bulk and bonded water in tissue have a nonlinear relationship with the pressure.Diferences in tissue structure and morphology contribute to site specific probe pressure effects.Then the finite element(FEM)and Monte Carlo(MC)method is employed to simulate the deformation and reflectance spectrum variations of tissue before and after compression.The simulation results show that as the pressure of fiber optic probe applied to the detected skin increased to 80kPa,the effective photon proportion form dermis decreases significantly from 86%to 76%.Future designs might benefit from the research of change of water volume inside the tissue to mitigate the pressure applied to skin.展开更多
Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This st...Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This study has investigated the application and method development of vapor phase mid-Infrared (mid-IR) spectroscopy using a field portable quantum cascade laser (QCL) based system for the detection and identification of accelerant residues such as gasoline, diesel, and ethanol in fire debris. A searchable spectral library of various ignitable fluids and fuel components measured in the vapor phase was constructed that allowed for real-time identification of accelerants present in samples using software developed in-house. Measurement of vapors collected from paper material that had been doused with an accelerant followed by controlled burning and then extinguished with water showed that positive identification could be achieved for gasoline, diesel, and ethanol. This vapor phase mid-IR QCL method is rapid, easy to use, and has the sensitivity and discrimination capability that make it well suited for non-destructive crime scene sample analysis. Sampling and measurement can be performed in minutes with this 7.5 kg instrument. This vibrational spectroscopic method required no time-consuming sample pretreatment or complicated solvent extraction procedure. The results of this initial feasibility study demonstrate that this portable fire debris analyzer would greatly benefit arson investigators performing analysis on-site.展开更多
基金National Key Research and Development Project(Grant No.2019YFE0123300)National Natural Science Foundation of China(Grant Nos.42072337,42241111,and 42241129)+1 种基金Pandeng Program of National Space Science Center,Chinese Academy of Sciences.Xing Wu also acknowledges support from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(Grant No.2022QNRC001)China Postdoctoral Science Foundation(Grant No.2021M700149).
文摘With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.
基金National Key Technologies R&D Program Foundation of China (Grant No. 2006BAK04A11)
文摘To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.
基金Supported by National Natural Science Foundation of China(81360623)~~
文摘[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, A. spinula, A. Caespitosa, A. sichuanensis, A. ebianensis, A. retusa, A. guizhouensis and A. liboensis were subjected to drying, pulverization and sieving and then directly determined for near- infrared reflectance spectrums; and the plants in this genus were classified by clus- ter analysis and principal component analysis (PCA). [Result] The near-infrared re- flectance spectrums of the 23 batches of Guizhou Aspidistra plants showed very high similarity. The spectrums were processed by first derivative method, and the spectral range of 4 000-7 500 cm-1 was selected as the analytical range. Cluster analysis and PCA were employed to mass spectrum variables of plants in Aspidis- tra, fewer new variables became the linear combination of primary variables, and small differences between different varieties were enlarged, thereby facilitating intu- itive classification of plants in this genus. [Conclusion] Near-infrared diffuse re- flectance spectroscopy is nondestructive and rapid for determination of solid sam- pies, and provides a new method for the classification of Guizhou Aspidistra plants combined by information processing techniques.
基金Supported by National Wheat Industry System(CARS-E-2-36)Henan Wheat Industry System(S2010-10-02)National Science and Technology Support Plan(2011BAD35B-03)~~
文摘[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.
基金supported by the projects under the Innovation Team of the Safety Standards and Testing Technology for Agricultural Products of Zhejiang Province, China (Grant No.2010R50028)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (Grant No.2006BAK02A18)
文摘Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.
文摘In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.
基金Project supported by the National Key Scientific Instrument and Equipment Development,China(Grant No.2014YQ060537)the National Key Research and Development Program,China(Grant No.2016YFC0201103)
文摘A compact prototype based on mid-infrared wavelength modulation spectroscopy(WMS)is developed for the simul-taneous monitoring of NO,NO2,and NH3 in the urban area.Three quantum cascade lasers(QCLs)with central frequencies around 1900.0 cm^-1,1600.0 cm^-1,and 1103.4 cm^-1are used for NO,NO2,and NH3detections,respectively,by timedivision multiplex.An open-path multi-pass cell of 60-m optical path length is applied to the instrument for high sensitivity and reducing the response time to less than 1 s.The prototype achieves a sub-ppb detection limit for all the three target gases with an average time of about 100 s.The instrument is installed in the Jiangsu environmental monitoring center to conduct performance tests on ambient air.Continuous 24-hour measurements show good agreement with the results of a reference instrument based on the chemiluminescence technique.
基金Supported by the Science Technology Development Project of Jilin Province,China(No.20020503-2).
文摘Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems.
文摘Using 128 bulk-kernel samples of inbred lines and hybrids, a study was conducted toinvestigate the feasibility and method of measuring protein and starch contents inintact seeds of maize by near infrared reflectance spectroscopy (NIRS). The chemometricalgorithms of partial least square (PLS) regression was used. The results indicated thatthe calibration models developed by the spectral data pretreatment of firstderivative+multivariate scattering correction within the spectral region of 10000-4000cm-1, and first derivative + straight line subtraction in 9000-4000cm-1 were thebest for protein and starch, respectively. All these models yielded coefficients ofdetermination of calibration (R2cal) above 0.97, while R2cv and R2val of cross and externalvalidation ranged from 0.92 to 0.95, respectively; however, the root of mean squareerrors of calibration, cross and external validation (RMSEE, RMSECV and RMSEP) werebelow 1(ranged 0.3-0.7),respectively. This study demonstrated that it is feasible touse NIRS as a rapid, accurate, and none-destructive technique to predict protein andstarch contents of whole kernel in the maize quality improvement program.
基金partially supported by the Graduate Student Research Grants from the Gulf Coast Association of Geological Societies (GCAGS)American Association of Petroleum Geologist (AAPG)by the University of Texas at Arlington and by the Pioneer Natural Resources
文摘Thermal maturity is commonly assessed by various geochemical screening methods(e.g.,pyrolysis and organic petrology).In this contribution,we attempt to establish an alternative approach to estimating thermal maturity with Raman spectroscopy,using 24 North American oil shale samples with thermal maturity data generated by vitrinite reflectance(VRo%)and pyrolysis(Tmax)-based maturity calculation(VRe%).The representative shale samples are from the Haynesville(East Texas),Woodford(West Texas),Eagle Ford and Pearsall(South Texas)Formations,as well as Gothic,Mancos,and Niobrara Formation shales(all from Colorado).The Raman spectra of disordered carbonaceous matter(D1 and G bands separation)of these samples were directly obtained from the rock chips without prior sample preparation.Using the Gaussian and Lorentzian distribution approach,thermal maturities from VR were correlated with carbon G and D1.We found that the Raman band separation(RBS)displayed a better correlation for equivalent VRe%than vitrinite reflectance VRo%.The RBS(D1–G)distance versus total organic carbon,free hydrocarbons from thermal extraction(S1),and the remaining hydrocarbon generating potential(S2)indicate that the RBS(D1–G)distance is also related to kerogen type.Data presented here from three methods of maturity determination of shale demonstrate that Raman spectroscopy is a quick and valid approach to thermal maturity assessment.
文摘Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.
文摘Nitrogen content is an important parameter for petroleum refining processes. The combined use of mid-infrared attenuated total reflection spectroscopy and multivariate calibration allows accurate determination of nitrogen content in petroleum and its products. The calibration models of nitrogen content in crude oils have been established by partial least squares (PLS) method. The results predicted by this method were very close to those determined by standard methods. Compared with standard methods, this method is provided with advantages such as high-speed, simplicity and good-repeat- ability without any needs for pretreatment.
基金financially supported by China Special Public Sector Fund in Agriculture(200903006)The collection of data and analysis were funded by National Key Technology Research and Development Program(2011BAD26B0404)The interpretation of data and writing of the manuscript were supported by 111 Project(B16044)
文摘Background: The ability of near-infrared reflectance spectroscopy(NIRS) to determine the digestible energy(DE)and metabolizable energy(ME) content of corn fed to growing pigs was tested. One hundred and seventeen corn samples, comprising different planting regions and varieties were collected from all over China in a three-year period. The samples were randomly split into a calibration set(n = 88) and a validation set(n = 29). The actual and calculated DE and ME content of the corn samples was determined by digestion-metabolism experiments and the prediction equations of Noblet and Perez(J Anim Sci. 71:3389–98,1993). The samples were then subjected to NIRS scanning and calibrations were performed by the modified partial least square(MPLS) regression method based on77 different spectral pre-treatments. The NIRS equations based on the actually determined and calculated DE and ME were built separately and then validated using validation samples.Results: The NIRS equations obtained from actually determined DE, the coefficient of determination for calibration(RSQcal), cross-validation(R^2CV), and validation(RSQv) were 0.89, 0.87 and 0.86, and these values for determined ME were 0.87, 0.86 and 0.86. For the NIRS equations built from calculated DE, the RSQcal, R^2CV, and RSQvvalues were 0.88, 0.85 and 0.84, and these values for calculated ME were 0.86, 0.84 and 0.82. Except for the equation based on calculated ME(RPD_v= 2.38, 〈 2.50), the other three equations built from actually determined energy and calculated DE produced good prediction performance(RPD_vranging from 2.53 to 2.69, 〉 2.50) when applied to validation samples.Conclusion: These results indicate that NIRS can be used as a quantitative method for the rapid determination of the available energy in corn fed to growing pigs, and the NIRS equations based on the actually determined energy produced better predictive performance than those built from calculated energy values.
基金Supported by the Special Fund for the Industrial Technology System Construction of Modern Agriculture in Wheat(CARS-E-2-36)the Special Fund for Henan Industrial Technology System Construction of Modern Agriculture in Wheat(S2010-10-02)National Support Program for Science and Technology(2011BAD35B03)~~
文摘[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drought resistance were selected and were classified according to their drought resistance grades determined by the Technical Specification of Identification and Evaluation for Drought Resistance in Wheat (GB/T 21127-2007). In addition, the harvested wheat seed samples were spectrally analyzed with FOSS NIRSystems5000 near-infrared spectrum analyzer for grain quality (full spectrum analyzer) and then the forecasted regression equations were established. [Result] After the establishment of a database and validation, dis- criminated functions were obtained. The determination coefficient (RSQ) and coeffi- cients of determination for cross validation (1-VR) in the discriminant function built with seed samples from water stress area were 0.846 0 and 0.781 8, respectively, which indicated that the consistency between drought resistance and spectral charac- teristics in wheat varieties was good, and there was high correlation between the near-infrared diffuse reflectance spectra of seeds and the drought resistance in wheat. [Conclusiou] Under water stress condition, it is feasible to establish a conve- nient, rapid and no-damage identification system for the drought resistance in wheat by using the near-infrared diffuse reflectance spectrum technique to scan wheat seeds.
文摘Noninvasive,glucose-monitoring technologies using infrared spectroscopy that have been studied typically require a calibration process that involves blood collection,which renders the methods somewhat invasive.We develop a truly noninvasive,glucose-monitoring technique using midinfrared spectroscopy that does not require blood collection for calibration by applying domain adaptation(DA)using deep neural networks to train a model that associates blood glucose concentration with mid-infrared spectral data without requiring a training dataset labeled with invasive blood sample measurements.For realizing DA,the distribution of unlabeled spectral data for calibration is considered through adversarial update during training networks for regression to blood glucose concentration.This calibration improved the correlation coeffcient between the true blood glucose concentrations and predicted blood glucose concentrations from 0.38 to 0.47.The result indicates that this calibration technique improves prediction accuracy for mid-infrared glucose measurements without any invasively acquired data.
文摘Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mode in the wavelength range of 800-2500 nm. Wines (n=90) were randomly split into two sets, calibration set (n=54) and validation set (n=36). Discriminant analysis models were developed using BP neural network and discriminant partial least-squares discriminant analysis (PLS-DA). The prediction performance of calibration models in different wavelength range was also investigated. BP neural network models and PLS-DA models correctly classified 100% of the wines in calibration set. When used to predict wines in validation set, BP neural network models correctly classified 100%, 81.8%, and 90.9% of the wines from Changli, Huailai, and Yantai respectively, and PLS-DA models correctly classified 100% of all samples. The results demonstrated that NIRS could be used to discriminate Chinese grape wines as a rapid and reliable method.
文摘NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63% and 14.16% (wet basis) and the moisture concentration was verified using a standard oven method. Samples from various moisture levels were separated into two groups, as calibration and validation sets. NIR absorption spectral data from 400 nm to 2500 nm with 0.5 nm intervals were collected using pellets within the calibration and validation sample sets. Spectral wavelength ranges were taken as independent variables and the MC of the pellets as the dependent variable for the analysis. Measurements were obtained on 30 replicates within each moisture level. Partial Least Square (PLS) analysis was performed on both raw and preprocessed spectral data of calibration set to determine the best calibration model based on Standard Error of Calibration (SEC) and coefficient of multiple determinations (R2). The PLS model that yielded the best fit was used to predict the moisture concentration of validation group pellets. Relative Percent Deviation (RPD) and Standard Error of Prediction (SEP) were calculated to validate goodness of fit of the prediction model. Baseline and Multiple Scatter Corrected (MSC) reflectance spectra with 1st derivative model gave the highest RPD value of 4.46 and R2 of 0.95. Also it’s SEP (0.670) and RMSEP (0.782) were less than the other models those had RPD value more than 3.0 with less number of factors. Therefore, this model was selected as the best model for moisture content prediction of wood pellets.
基金the National Natural Science Foundation of China(NSFC),the grant numbers is 60578008,60938002supported by Grant(863 Program:2012AA022602)from the National High Technology Research and Development Program of China.
文摘The reflectance spectrun has been widely adopted to extract diagnosis information of human tissue because it possesses the advantages of noninvasive and rapidity.The external pressure brought by fiber optic probe may influence the accuracy of measurement.In this paper,a sys-tematic study is focused on the effects of probe pressure on intrinsic changes of water and scattering particles in tissue.According to the biphasic nonlinear mixture model,the pressure modulated reflectance spectrum of both in vitro and in vivo tissue is measured and processed with second-derivation.The results indicate that the variations of bulk and bonded water in tissue have a nonlinear relationship with the pressure.Diferences in tissue structure and morphology contribute to site specific probe pressure effects.Then the finite element(FEM)and Monte Carlo(MC)method is employed to simulate the deformation and reflectance spectrum variations of tissue before and after compression.The simulation results show that as the pressure of fiber optic probe applied to the detected skin increased to 80kPa,the effective photon proportion form dermis decreases significantly from 86%to 76%.Future designs might benefit from the research of change of water volume inside the tissue to mitigate the pressure applied to skin.
文摘Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This study has investigated the application and method development of vapor phase mid-Infrared (mid-IR) spectroscopy using a field portable quantum cascade laser (QCL) based system for the detection and identification of accelerant residues such as gasoline, diesel, and ethanol in fire debris. A searchable spectral library of various ignitable fluids and fuel components measured in the vapor phase was constructed that allowed for real-time identification of accelerants present in samples using software developed in-house. Measurement of vapors collected from paper material that had been doused with an accelerant followed by controlled burning and then extinguished with water showed that positive identification could be achieved for gasoline, diesel, and ethanol. This vapor phase mid-IR QCL method is rapid, easy to use, and has the sensitivity and discrimination capability that make it well suited for non-destructive crime scene sample analysis. Sampling and measurement can be performed in minutes with this 7.5 kg instrument. This vibrational spectroscopic method required no time-consuming sample pretreatment or complicated solvent extraction procedure. The results of this initial feasibility study demonstrate that this portable fire debris analyzer would greatly benefit arson investigators performing analysis on-site.