Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a...Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.展开更多
Multichannel seismic studies performed at fastspreading mid-ocean ridges revealed the presence of a thin(tens to hundreds of meters high), narrow(< 1-2 km wide) axial melt lens(AML) in the mid-crust, which is under...Multichannel seismic studies performed at fastspreading mid-ocean ridges revealed the presence of a thin(tens to hundreds of meters high), narrow(< 1-2 km wide) axial melt lens(AML) in the mid-crust, which is underlain by crystal/melt mush that is in turn laterally surrounded by a transition zone of mostly solidified material. In order to shed light on the complexity of magmatic and metamorphic processes ongoing within and at the roof of axial melt lenses, we have focused on the petrological and geochemical record provided by fossilized AMLs. Of particular significance is Hole 1256D in the equatorial Pacific drilled by the International Ocean Discovery Program(IODP), where for the first time, the transition between sheeted dikes and gabbros in intact fast-spreading crust was penetrated, providing a drill core with a more or less continuous record of the upper part of an AML(Teagle et al., 2006;Koepke et al., 2008). This can be regarded as rosetta stone to answer longstanding questions on the complex magmatic evolution within an AML, as well as on metamorphic and anatectic processes ongoing at the roof of a dynamic AML, rising upward in the midcrust as a consequence of a replenishment event. The plutonic rocks drilled from Hole 1256D consist of quartz-bearing gabbros, diorites and tonalites, which might represent the upper part of a fossilized AML. The gabbros and diorites are consistent with modeled products of MORB fractional crystallization, composed of mixed melt and cumulate in varying ratios. Modeled trace elements support a model in which the tonalites originated from low-degree partial melting of the sheeted dikes overlying the AML, rather than extreme fractional crystallization(Erdmann et al., 2015;Zhang et al., 2017a). Therefore, the upper part of AML, largely composed of low density and high-viscosity felsic magmas, may serve as a barrier to eruptible MORB melts in the lower part of AML. Zoning of apatites from three different lithologies, tonalites, diorites, and gabbros, is common and shows a consistent evolution trend with depletion in Cl and REEs from core to rim. The cores are usually homogenous in composition and interpreted as magmatic origin, whereas zones with lower Cl and REEs are disseminated with heterogeneous concentrations, indicating exchanges with hydrothermal fluids. The high-Cl apatite core indicates assimilation of high-Cl brines at a magmatic stage, which is interpreted as immiscibility product from cycling seawater-derived fluids at a high temperature(Zhang et al., 2017b). The variation of F/Cl and Br/Cl ratios of bull rocks may reflect the mixing between MORB magmas and seawater-derived fluids, crystallization of apatite and amphibole, and/or extraction of magmatic fluids(Zhang et al., 2017c).展开更多
The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).Howe...The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).However,one of the long-standing problems of these classical models is the discrepancies between predicted and observed heat flow and floor depth for very young and very old lithosphere.There have been several recent attempts to overcome this problem:one model incorporates temperature-and pressure-dependent parameters and the second model includes an additional low-conductivity crustal layer or magma rich mantle layer(MRM).Alternatively,in the current paper,the ordinary density of lithosphere in the plate conductive models is substituted with a reduction of lithosphere density towards axis that features the irregularity and nonlinearity of plates across the mid-ocean ridges.A new model is formulated incorporating the new form of density for predicting both peak heat flow and floor depth.Simple solutions of power-law forms derived from the model can significantly improve the predicting results of heat flow and floor depth over the mid-ocean ridges.Several datasets in the literature were reutilized for model validation and comparison.These datasets include both earlier datasets used for original model calibration and the more recently compiled high-quality datasets with both sedimentary and crustal loading corrections.The results indicate that both the heat flow and the slope(first orderderivative)of sea floor approach infinity(undifferentiability or singularities)around the mid-ocean ridges.These singularities are partially due to the boundary condition as it has been already known in the literature and partially to the reduction of density of lithosphere as discovered for the first time in the current research.展开更多
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean...Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.展开更多
The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition ...The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.展开更多
Based on 230Th-238U disequilibrium and major element data from mid-ocean ridge basalts(MORBs) and ocean island basalts(OIBs),this study calculates mantle melting parameters,and thereby investigates the origin of 230Th...Based on 230Th-238U disequilibrium and major element data from mid-ocean ridge basalts(MORBs) and ocean island basalts(OIBs),this study calculates mantle melting parameters,and thereby investigates the origin of 230Th excess.(230Th/238U) in global MORBs shows a positive correlation with Fe8,Po,Na8,and Fmelt(Fe8 and Na8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%,Po=pressure of initial melting and Fmelt=degree of melt),while 230Th excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting.Furthermore,compared with the MORBs,higher(230Th/238U) in OIBs actually corresponds to a lower melting degree.This suggests that the 230Th excess in MORBs is controlled by mantle melting conditions,while the 230Th excess in OIBs is more likely related to the deep garnet control.The vast majority of calculated initial melting pressures of MORBs with excess 230Th are between 1.0 and 2.5 GPa,which is consistent with the conclusion from experiments in recent years that DU】DTh for Al-clinopyroxene at pressures of 】1.0 GPa.The initial melting pressure of OIBs is 2.2-3.5 GPa(around the spinel-garnet transition zone),with their low excess 226Ra compared to MORBs also suggesting a deeper mantle source.Accordingly,excess 230Th in MORBs and OIBs may be formed respectively in the spinel and garnet stability field.In addition,there is no obvious correlation of K2O/TiO2 with(230Th/238U) and initial melting pressure(Po) of MORBs,so it is proposed that the melting depth producing excess 230Th does not tap the spinel-garnet transition zone.OIBs and MORBs in both(230Th/238U) vs.K2O/TiO2 and(230Th/238U) vs.Po plots fall in two distinct areas,indicating that the mineral phases which dominate their excess 230Th are different.Ce/Yb-Ce curves of fast and slow ridge MORBs are similar,while,in comparison,the Ce/Yb-Ce curve for OIBs shows more influence from garnet.The mechanisms generating excess 230Th in MORBs and OIBs are significantly different,with formation of excess 230Th in the garnet zone only being suitable for OIBs.展开更多
Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, howeve...Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.展开更多
Abstract: Based on the analysis of core samples from the hole of Zk23 in the East China Sea Continental Shelf and by means of sedimentary stratigraphy, biostratigraphy and chronostratigraphy, the authors consider tha...Abstract: Based on the analysis of core samples from the hole of Zk23 in the East China Sea Continental Shelf and by means of sedimentary stratigraphy, biostratigraphy and chronostratigraphy, the authors consider that the fine-sand deposition in borehole was part of buried ancient estuary sand ridges of the Yangtze River. The deposition history of study area around the hole before and after the glacial period as well as postglacial period is made clear after our research: (1) the estuarine sublayer -undersea delta facies strata was deposited under the fast sea level rise about 15 kaB.P; (2) sand ridges mostly consisting of fine-sand, were formed when the sea level was the fluctuant range of 60 - 80 m of isoba during the deglacial period around 15 - 12 kaB.P; (3) first silty clay and clay silt strata above the sand ridges were deposited during the period when the sea level rose fast from 12 to 7 kaB.P, and then it keeps stable to the present.展开更多
[Objective] This study aimed to provide theoretical basis and technologies for the application of planting in furrow and whole plastic-film mulching on double ridges. [Method] The conventional method was used to re-se...[Objective] This study aimed to provide theoretical basis and technologies for the application of planting in furrow and whole plastic-film mulching on double ridges. [Method] The conventional method was used to re-seed the bunch Gramineous forage in the degraded desert grassland in Yanchi, Ningxia Hui Autonomous Region. Four kinds of conservation treatments, namely, ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting with no ridging and mulching were conducted to the forage to analyze the effects of each treatment on soil moisture and seedling growth. [Result] From July to November, the moisture contents of ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting were respectivery 9.88%, 9.24%, 8.75% and 8.13%, showing significant differences among the treatments; the survival rates of re-seeding forage were 96.2% , 93.4% , 45.6% and 28.3% , and the mulching treatment showed significant difference with the unmulching treatments in survival rate. The treatment with black film mulching showed great advantage that its moisture content on ridge top had the buffering effect of "load shifting", and the soil moisture content of black mulching treatment increased 21.5% than the flatplanting. Black film mulching also had the largest water supplement amount in soil below 1 m. Although mulching cost too much, its overall benefits were higher than that with no mulching. [Conclusion] This study lays the experimental basis for the application of planting in furrow and whole plastic-film mulching on double ridges in improving degraded grassland desertification.展开更多
A number of high-temperature processes(e.g.,melt-rock reactions,metasomatism,partial melting)can produce signifi cant Ca isotopic fractionation and heterogeneity in the mantle,but the mechanism for such fractionation ...A number of high-temperature processes(e.g.,melt-rock reactions,metasomatism,partial melting)can produce signifi cant Ca isotopic fractionation and heterogeneity in the mantle,but the mechanism for such fractionation remains obscure.To investigate the eff ect of mantle partial melting on Ca isotopic fractionation,we reported high-precision Ca isotopic compositions of depleted mid-ocean ridge basalts(MORBs)from the East Pacifi c Rise and Ecuador Rift in the northeastern Pacifi c.Theδ44/40 Ca of these MORB samples exhibit a narrow variation from 0.84‰to 0.88‰with an average of 0.85‰±0.03‰,which are similar to those of reported MORBs(0.83‰±0.11‰)and back-arc basin basalts(BABBs,0.80‰±0.08‰)in literature,but are lower than the estimate value for the bulk silicate Earth(BSE,0.94‰±0.05‰).The lowδ44/40 Ca signatures of MORB samples in this study cannot be caused by fractional crystallization,since intermediate-mafi c diff erentiation has been demonstrated having only limited eff ects on Ca isotopic fractionation.Instead,the off set ofδ44/40 Ca between MORBs and the BSE is most likely produced by mantle partial melting.During this process,the light Ca isotopes are preferentially transferred to the melt,while the heavy ones tend to stay in the residue,which is consistent with the fact thatδ44/40 Ca of melt-depleted peridotites increases with partial melting in literature.The behavior of Ca isotopes during mantle partial melting is closely related to the inter-mineral(Cpx and Opx)Ca isotopic fractionation and melting mineral modes.Mantle partial melting is one of the common processes that can induce lowerδ44/40 Ca values in basalts and Ca isotopic heterogeneity in Earth’s mantle.展开更多
The ridge like seafloor highs with various geological origins can be classed into mid-ocean ridges,transverse ridges related to transform faults,hot spot/mantle plume originated ridges,microcontinent rifted from major...The ridge like seafloor highs with various geological origins can be classed into mid-ocean ridges,transverse ridges related to transform faults,hot spot/mantle plume originated ridges,microcontinent rifted from major continent,intra-plate arc formed by interaction of two oceanic plates,and tectonic ridges uplifted by later tectonic activity.Those ridges moved towards the convergent continental margins along with the underlain plate drifting and formed so-called accreted ridges commonly trending at a high angle to the continental margins.At divergent continental margins,the continental crusts were extended and thinned accompanying with magmatism,which formed high terrains protruding or parallel to the coastal line.The ridges worldwide have various origins and the crustal thicknesses and structures of them are diversity.The crusts beneath the microcontinents,and the transverse ridges along the transform margin,and the seafloor highs beside the passive continental margins are continental,while the crusts of other ridges are oceanic.Article 76 of the United Nations Convention on the Law of the Sea (UNCLOS) has classed the seafloor highs worldwide into three legal categories,namely oceanic ridges,submarine ridges and submarine elevations,for the purpose to delineate the outer limit of the coastal States' continental shelf beyond 200 nautical miles.To define the categories of the legal seafloor highs to which the ridges with various geological origins belong,the continuities in morphology and geology including the rock types,crustal structures,origins and tectonic setting of the ridges and the coastal States' land mass with its submerged prolongation should be taken into account.If a ridge is continuous both in morphology and geology with the coastal States' land mass and its submerged prolongation,it is a submarine elevation stipulated in Article 76.If it is discontinuous in morphology,the ridge should be regarded as oceanic ridges.If a ridge is continuous in morphology but discontinuous in geology with the coastal States' land mass and its submerged prolongation,then it is a submarine ridge as stipulated in Article 76.展开更多
The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in co...The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.展开更多
Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The result...Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The results show that the significant wave height (H1/3) varies from 0.15 to 2.22 m with the average of 0.59 m and the mean wave period (Tmean) varies from 2.06 to 6.82 s with the average of 3.71 s. The percentage of single peak in the wave spectra is 88.6 during the measurement period, in which 36.3% of the waves are pure wind waves and the rest are young swells. The percentage with the significant wave height larger than 1 m is 12.4. The dominant wave directions in the study area are WNW, W, ESE, E and NW. The relationships among the characteristic wave heights, the characteristic wave periods, and the wave spectral parameters are identified. It is found that the tentative spectral model is suitable for the quantitative description of the wave spectrum in the study area, while the run lengths of the wave group estimated from the measured data are generally larger than those in other sea areas.展开更多
The existing researches on the damping wheel mainly focus on investigating the influence of damping structure change on the vibro-acoustic control.The changes include the geometric size of the damping structure,the da...The existing researches on the damping wheel mainly focus on investigating the influence of damping structure change on the vibro-acoustic control.The changes include the geometric size of the damping structure,the damping material parameters,and the placement,and so on.In order to further understand the mechanism in reducing the acoustic radiation of railway wheel with layer damping treatment,in this paper,the wheel is simply modified by a full-sized circular plate.The circle plate side has stuck circumference constrained damping ridges and radial constrained damping ridges on it.Based on a hybrid finite element method-boundary element method(FEM-BEM),the paper develops a vibro-acoustic radiation model for such a distributed constrained damping structure.The vibration and acoustic radiation of the circular plate is analyzed.In the analysis,the dynamic response of the system is obtained by using the 3D finite model superposition method.The obtained vibration response is used as the initial boundary condition in solving Helmholtz boundary integral equation for the sound radiation analysis.In the procedure,firstly,the modal analysis of the circular plate is performed to get the distribution of the system modal strain energy.Secondly,the vibro-acoustic radiation characteristics of the plate with different kinds of circumference damping ridges and radial damping ridges are compared in order to try to find the best effective damping ridge structure.Thirdly,using the distribution of the plate modal strain energy investigates the effect of the ridge distribution locations on the circular plate on its vibro-acoustic radiation.The calculation and analysis research results show that,the sticking circumference and radial damping ridges on the plate can control the vibro-acoustic radiation of the plate effectively in different frequency range.The distribution of the constrained damping ridge has an effect on reduction in vibro-acoustic radiation of the circular plate.The present research is very useful in the design of railway wheel with low noise level.展开更多
To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “...To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.展开更多
Fingerprint segmentation is an important step in fingerprint recognition and is usually aimed to identify non-ridge regions and unrecoverable low quality ridge regions and exclude them as background so as to reduce th...Fingerprint segmentation is an important step in fingerprint recognition and is usually aimed to identify non-ridge regions and unrecoverable low quality ridge regions and exclude them as background so as to reduce the time expenditure of image processing and avoid detecting false features. In high and in low quality ridge regions, often are some remaining ridges which are the afterimages of the previously scanned finger and are expected to be excluded from the foreground. However, existing seg-mentation methods generally do not take the case into consideration, and often, the remaining ridge regions are falsely classified as foreground by segmentation algorithm with spurious features produced erroneously including unrecoverable regions as fore-ground. This paper proposes two steps for fingerprint segmentation aimed at removing the remaining ridge region from the fore-ground. The non-ridge regions and unrecoverable low quality ridge regions are removed as background in the first step, and then the foreground produced by the first step is further analyzed for possible remove of the remaining ridge region. The proposed method proved effective in avoiding detecting false ridges and in improving minutiae detection.展开更多
Fundamental experiments were carried out in a wave flume on internal solitary wave (ISW) of depression-type propagating over a submerged ridge. The seabed ridge included either triangular or semicircular shape - reg...Fundamental experiments were carried out in a wave flume on internal solitary wave (ISW) of depression-type propagating over a submerged ridge. The seabed ridge included either triangular or semicircular shape - regarded as topographic obstacles. Influenced by the submarine ridge, the transmitted waves were found to always consist of a leading pulse (a solitary wave) followed by a dispersive wave train. The wave profile propagating over a triangular ridge was similar to that caused by a semicircular obstacle. Apparently, the smooth face of a semicircular ridge produced time lag of wave propagation. From experimental results available, the reduction in wave energy induced by a semicircular ridge was larger than that by a triangular one. The events of wave distortion, strong breaking, internal bolus, and stratification mixing happened in case that the crest of an ISW was great enough to interact with the topographic obstacle. The reduction in wave energy was induced by strong breaking, and it depended on the ridge height rather than the geometric shape of the ridge.展开更多
Mid-ocean ridge basalts(MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of...Mid-ocean ridge basalts(MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of a peridotitic mantle and subsequently fractional crystallization. Geochemical diversity of MORBs have been attributed to large-scale heterogeneity within the underlying mantle, and the heterogeneity might have been caused by addition of recycled crustal component, subcontinental lithosphere, metasomatized lithosphere and outer core contribution. In this study, we investigated the MORBs along the Mid-Atlantic Ridge(MAR) by estimating the temperature and pressure of partial melting, and comprehensively comparing trace element and isotope ratios. The data for MORBs from areas close to mantle plumes show large variations. Mantle plumes can affect mid-oceanic ridges 1 400 km away, but plume effects did not cover all of the ridge segments, and those segments without plume effects did not have any abnormalities in temperature, trace element or isotope ratios.We ascribed the above phenomena to result from the shapes of the plume flow, which we categorized as "pipelike channels" and "pancake-like channels". The "pancake-like channels" plumes affected the ambient mantle nondirectionally, but the range of the mantle affected by the "pipe-like channels" plumes were selective. Element ratios of MORBs reveal that the mantle source of the MORBs along the MAR is highly heterogeneous. We suggest that most of source heterogeneities of the MORBs may be due to the presence of subducted slab and delaminated lower crust in the source. In addition, the plume that carried materials from the core-mantle boundary may affect some of the segments.展开更多
The comparison of the underwater topographic data in recent four decades shows that main waterways of the radial sand ridges area in the southern Yellow Sea tend to gradually migrate southward(scour depth and southwa...The comparison of the underwater topographic data in recent four decades shows that main waterways of the radial sand ridges area in the southern Yellow Sea tend to gradually migrate southward(scour depth and southward extension of the main channels in Xiyang, southward approach of Lanshayang Waterway and Xiaomiaohong Waterway on South Flank). Although there are various hypotheses about the cause and mechanism of the overall southward migration of the radial sand ridges, no universal and reliable understanding has been obtained so far. The mechanism of this process becomes a challenging problem which serves a key issue in the morphodynamics of the radial sand ridges and the harbor construction in this area. On the basis of the shoreline positions and underwater terrains at different development stages of the Huanghe Delta coast in northern Jiangsu Province, China since the northward return of the Huanghe River and flowed into the Bohai Sea,combined with the tidal wave numerical simulation study, the characteristics and hydrodynamic changes of the tidal wave system in the southern Yellow Sea at different evolution stages are investigated. It is shown that due to the shoreline retreat and the erosion of underwater delta, tidal current velocity is enhanced, and the enhanced area gradually migrates southward. It is revealed that this southward migration of a large-scale regional hydrodynamic axis is possibly a dominant mechanism leading to the overall southward migration of the radial sand ridges.展开更多
Lunar ridges are a kind of familiar linear structures developed on the lunar surface. The distribution pattern, formation mechanism and research significance of lunar ridges are discussed in this paper. Single lunar r...Lunar ridges are a kind of familiar linear structures developed on the lunar surface. The distribution pattern, formation mechanism and research significance of lunar ridges are discussed in this paper. Single lunar ridges are usually distributed in the form of broken lineation, and, as whole, lunar ridges are trapezoidal or annular in shape around the maria. As to the formation mechanism, only volcanism or tectonism was emphasized in the past, but the two processes are seldom taken into combined consideration. On the basis of detailed analyses, the authors thought that tectonism is a prerequisite for the formation of lunar ridges, while volcanism is the key factor controlling their particular shapes. Finally, the authors pointed out that it is very significant in the study of lunar ridges to link the course of lunar structure evolution with the stress state in the lunar crust.展开更多
基金supported by the grant of China Ocean Mineral Resources R&D Association(DY135-S2-1-01)
文摘Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.
基金supported by the DFG(Deutsche Forschungsgemeinschaft)project KO 1723/17
文摘Multichannel seismic studies performed at fastspreading mid-ocean ridges revealed the presence of a thin(tens to hundreds of meters high), narrow(< 1-2 km wide) axial melt lens(AML) in the mid-crust, which is underlain by crystal/melt mush that is in turn laterally surrounded by a transition zone of mostly solidified material. In order to shed light on the complexity of magmatic and metamorphic processes ongoing within and at the roof of axial melt lenses, we have focused on the petrological and geochemical record provided by fossilized AMLs. Of particular significance is Hole 1256D in the equatorial Pacific drilled by the International Ocean Discovery Program(IODP), where for the first time, the transition between sheeted dikes and gabbros in intact fast-spreading crust was penetrated, providing a drill core with a more or less continuous record of the upper part of an AML(Teagle et al., 2006;Koepke et al., 2008). This can be regarded as rosetta stone to answer longstanding questions on the complex magmatic evolution within an AML, as well as on metamorphic and anatectic processes ongoing at the roof of a dynamic AML, rising upward in the midcrust as a consequence of a replenishment event. The plutonic rocks drilled from Hole 1256D consist of quartz-bearing gabbros, diorites and tonalites, which might represent the upper part of a fossilized AML. The gabbros and diorites are consistent with modeled products of MORB fractional crystallization, composed of mixed melt and cumulate in varying ratios. Modeled trace elements support a model in which the tonalites originated from low-degree partial melting of the sheeted dikes overlying the AML, rather than extreme fractional crystallization(Erdmann et al., 2015;Zhang et al., 2017a). Therefore, the upper part of AML, largely composed of low density and high-viscosity felsic magmas, may serve as a barrier to eruptible MORB melts in the lower part of AML. Zoning of apatites from three different lithologies, tonalites, diorites, and gabbros, is common and shows a consistent evolution trend with depletion in Cl and REEs from core to rim. The cores are usually homogenous in composition and interpreted as magmatic origin, whereas zones with lower Cl and REEs are disseminated with heterogeneous concentrations, indicating exchanges with hydrothermal fluids. The high-Cl apatite core indicates assimilation of high-Cl brines at a magmatic stage, which is interpreted as immiscibility product from cycling seawater-derived fluids at a high temperature(Zhang et al., 2017b). The variation of F/Cl and Br/Cl ratios of bull rocks may reflect the mixing between MORB magmas and seawater-derived fluids, crystallization of apatite and amphibole, and/or extraction of magmatic fluids(Zhang et al., 2017c).
基金supported by National Natural Science Foundation of China(grant number 42050103)Guangdong Research Team Development Grant(grant number 2021ZT09H399)。
文摘The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).However,one of the long-standing problems of these classical models is the discrepancies between predicted and observed heat flow and floor depth for very young and very old lithosphere.There have been several recent attempts to overcome this problem:one model incorporates temperature-and pressure-dependent parameters and the second model includes an additional low-conductivity crustal layer or magma rich mantle layer(MRM).Alternatively,in the current paper,the ordinary density of lithosphere in the plate conductive models is substituted with a reduction of lithosphere density towards axis that features the irregularity and nonlinearity of plates across the mid-ocean ridges.A new model is formulated incorporating the new form of density for predicting both peak heat flow and floor depth.Simple solutions of power-law forms derived from the model can significantly improve the predicting results of heat flow and floor depth over the mid-ocean ridges.Several datasets in the literature were reutilized for model validation and comparison.These datasets include both earlier datasets used for original model calibration and the more recently compiled high-quality datasets with both sedimentary and crustal loading corrections.The results indicate that both the heat flow and the slope(first orderderivative)of sea floor approach infinity(undifferentiability or singularities)around the mid-ocean ridges.These singularities are partially due to the boundary condition as it has been already known in the literature and partially to the reduction of density of lithosphere as discovered for the first time in the current research.
基金Supported by the State Key Program of National Natural Science of China(No.42330308)the Project of Donghai Laboratory(No.DH-2022ZY0005)+4 种基金the Scientific Research Fund of the Second Institute of OceanographyMinistry of Natural Resources(No.QHXZ2301)the National Science Foundation for Distinguished Young Scholars of China(No.42025601)for Young Scientists of China(No.41906064)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ24D060001)。
文摘Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.
基金the National Natural Science Foundation of China(Nos.42176087,42322605)the Laoshan Laboratory(No.LSKJ202204100)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021206)。
文摘The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.
基金supported by National Natural Science Foundation of China (Grant No.40830849)Special Foundation for the Eleventh Five Plan of COMRA (Grant No.DYXM-115-02-1-03)National Natural Science Foundation of China (Grant No.40906029)
文摘Based on 230Th-238U disequilibrium and major element data from mid-ocean ridge basalts(MORBs) and ocean island basalts(OIBs),this study calculates mantle melting parameters,and thereby investigates the origin of 230Th excess.(230Th/238U) in global MORBs shows a positive correlation with Fe8,Po,Na8,and Fmelt(Fe8 and Na8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%,Po=pressure of initial melting and Fmelt=degree of melt),while 230Th excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting.Furthermore,compared with the MORBs,higher(230Th/238U) in OIBs actually corresponds to a lower melting degree.This suggests that the 230Th excess in MORBs is controlled by mantle melting conditions,while the 230Th excess in OIBs is more likely related to the deep garnet control.The vast majority of calculated initial melting pressures of MORBs with excess 230Th are between 1.0 and 2.5 GPa,which is consistent with the conclusion from experiments in recent years that DU】DTh for Al-clinopyroxene at pressures of 】1.0 GPa.The initial melting pressure of OIBs is 2.2-3.5 GPa(around the spinel-garnet transition zone),with their low excess 226Ra compared to MORBs also suggesting a deeper mantle source.Accordingly,excess 230Th in MORBs and OIBs may be formed respectively in the spinel and garnet stability field.In addition,there is no obvious correlation of K2O/TiO2 with(230Th/238U) and initial melting pressure(Po) of MORBs,so it is proposed that the melting depth producing excess 230Th does not tap the spinel-garnet transition zone.OIBs and MORBs in both(230Th/238U) vs.K2O/TiO2 and(230Th/238U) vs.Po plots fall in two distinct areas,indicating that the mineral phases which dominate their excess 230Th are different.Ce/Yb-Ce curves of fast and slow ridge MORBs are similar,while,in comparison,the Ce/Yb-Ce curve for OIBs shows more influence from garnet.The mechanisms generating excess 230Th in MORBs and OIBs are significantly different,with formation of excess 230Th in the garnet zone only being suitable for OIBs.
文摘Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.
文摘Abstract: Based on the analysis of core samples from the hole of Zk23 in the East China Sea Continental Shelf and by means of sedimentary stratigraphy, biostratigraphy and chronostratigraphy, the authors consider that the fine-sand deposition in borehole was part of buried ancient estuary sand ridges of the Yangtze River. The deposition history of study area around the hole before and after the glacial period as well as postglacial period is made clear after our research: (1) the estuarine sublayer -undersea delta facies strata was deposited under the fast sea level rise about 15 kaB.P; (2) sand ridges mostly consisting of fine-sand, were formed when the sea level was the fluctuant range of 60 - 80 m of isoba during the deglacial period around 15 - 12 kaB.P; (3) first silty clay and clay silt strata above the sand ridges were deposited during the period when the sea level rose fast from 12 to 7 kaB.P, and then it keeps stable to the present.
基金Supported by the Key Technologies R & D Program of the Ningxia Hui Autonomous Region (2011ZYN051)~~
文摘[Objective] This study aimed to provide theoretical basis and technologies for the application of planting in furrow and whole plastic-film mulching on double ridges. [Method] The conventional method was used to re-seed the bunch Gramineous forage in the degraded desert grassland in Yanchi, Ningxia Hui Autonomous Region. Four kinds of conservation treatments, namely, ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting with no ridging and mulching were conducted to the forage to analyze the effects of each treatment on soil moisture and seedling growth. [Result] From July to November, the moisture contents of ridging with black film mulching, ridging with transparent film mulching, ridging with no mulching and the flatplanting were respectivery 9.88%, 9.24%, 8.75% and 8.13%, showing significant differences among the treatments; the survival rates of re-seeding forage were 96.2% , 93.4% , 45.6% and 28.3% , and the mulching treatment showed significant difference with the unmulching treatments in survival rate. The treatment with black film mulching showed great advantage that its moisture content on ridge top had the buffering effect of "load shifting", and the soil moisture content of black mulching treatment increased 21.5% than the flatplanting. Black film mulching also had the largest water supplement amount in soil below 1 m. Although mulching cost too much, its overall benefits were higher than that with no mulching. [Conclusion] This study lays the experimental basis for the application of planting in furrow and whole plastic-film mulching on double ridges in improving degraded grassland desertification.
基金Supported by the National Natural Science Foundation of China(Nos.41773009,41873002)the Stake Key Laboratory of Geological Processes and Mineral Resources(No.GPMR201708)+2 种基金the National Science Foundation for Post-doctoral Scientists of China(No.2018M640660)the Taishan Scholar Program of Shandong(No.TS201712075)the AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology(No.2017ASTCP-OS07)。
文摘A number of high-temperature processes(e.g.,melt-rock reactions,metasomatism,partial melting)can produce signifi cant Ca isotopic fractionation and heterogeneity in the mantle,but the mechanism for such fractionation remains obscure.To investigate the eff ect of mantle partial melting on Ca isotopic fractionation,we reported high-precision Ca isotopic compositions of depleted mid-ocean ridge basalts(MORBs)from the East Pacifi c Rise and Ecuador Rift in the northeastern Pacifi c.Theδ44/40 Ca of these MORB samples exhibit a narrow variation from 0.84‰to 0.88‰with an average of 0.85‰±0.03‰,which are similar to those of reported MORBs(0.83‰±0.11‰)and back-arc basin basalts(BABBs,0.80‰±0.08‰)in literature,but are lower than the estimate value for the bulk silicate Earth(BSE,0.94‰±0.05‰).The lowδ44/40 Ca signatures of MORB samples in this study cannot be caused by fractional crystallization,since intermediate-mafi c diff erentiation has been demonstrated having only limited eff ects on Ca isotopic fractionation.Instead,the off set ofδ44/40 Ca between MORBs and the BSE is most likely produced by mantle partial melting.During this process,the light Ca isotopes are preferentially transferred to the melt,while the heavy ones tend to stay in the residue,which is consistent with the fact thatδ44/40 Ca of melt-depleted peridotites increases with partial melting in literature.The behavior of Ca isotopes during mantle partial melting is closely related to the inter-mineral(Cpx and Opx)Ca isotopic fractionation and melting mineral modes.Mantle partial melting is one of the common processes that can induce lowerδ44/40 Ca values in basalts and Ca isotopic heterogeneity in Earth’s mantle.
文摘The ridge like seafloor highs with various geological origins can be classed into mid-ocean ridges,transverse ridges related to transform faults,hot spot/mantle plume originated ridges,microcontinent rifted from major continent,intra-plate arc formed by interaction of two oceanic plates,and tectonic ridges uplifted by later tectonic activity.Those ridges moved towards the convergent continental margins along with the underlain plate drifting and formed so-called accreted ridges commonly trending at a high angle to the continental margins.At divergent continental margins,the continental crusts were extended and thinned accompanying with magmatism,which formed high terrains protruding or parallel to the coastal line.The ridges worldwide have various origins and the crustal thicknesses and structures of them are diversity.The crusts beneath the microcontinents,and the transverse ridges along the transform margin,and the seafloor highs beside the passive continental margins are continental,while the crusts of other ridges are oceanic.Article 76 of the United Nations Convention on the Law of the Sea (UNCLOS) has classed the seafloor highs worldwide into three legal categories,namely oceanic ridges,submarine ridges and submarine elevations,for the purpose to delineate the outer limit of the coastal States' continental shelf beyond 200 nautical miles.To define the categories of the legal seafloor highs to which the ridges with various geological origins belong,the continuities in morphology and geology including the rock types,crustal structures,origins and tectonic setting of the ridges and the coastal States' land mass with its submerged prolongation should be taken into account.If a ridge is continuous both in morphology and geology with the coastal States' land mass and its submerged prolongation,it is a submarine elevation stipulated in Article 76.If it is discontinuous in morphology,the ridge should be regarded as oceanic ridges.If a ridge is continuous in morphology but discontinuous in geology with the coastal States' land mass and its submerged prolongation,then it is a submarine ridge as stipulated in Article 76.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC0407503)the Fundamental Research Fund for Central Public-interest Scientific Institution(No.Y218009)
文摘The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.
文摘Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The results show that the significant wave height (H1/3) varies from 0.15 to 2.22 m with the average of 0.59 m and the mean wave period (Tmean) varies from 2.06 to 6.82 s with the average of 3.71 s. The percentage of single peak in the wave spectra is 88.6 during the measurement period, in which 36.3% of the waves are pure wind waves and the rest are young swells. The percentage with the significant wave height larger than 1 m is 12.4. The dominant wave directions in the study area are WNW, W, ESE, E and NW. The relationships among the characteristic wave heights, the characteristic wave periods, and the wave spectral parameters are identified. It is found that the tentative spectral model is suitable for the quantitative description of the wave spectrum in the study area, while the run lengths of the wave group estimated from the measured data are generally larger than those in other sea areas.
基金supported by National Natural Science Foundation of China (Grant No. 50821063)Technological Research and Development Programs of Railway Ministry of China (Grant No. 2008J001-A,Grant No. 2009J001)Natural Science Foundation of State Key Laboratory of Traction Power,China (Grant No. 2008TPL-Z07)
文摘The existing researches on the damping wheel mainly focus on investigating the influence of damping structure change on the vibro-acoustic control.The changes include the geometric size of the damping structure,the damping material parameters,and the placement,and so on.In order to further understand the mechanism in reducing the acoustic radiation of railway wheel with layer damping treatment,in this paper,the wheel is simply modified by a full-sized circular plate.The circle plate side has stuck circumference constrained damping ridges and radial constrained damping ridges on it.Based on a hybrid finite element method-boundary element method(FEM-BEM),the paper develops a vibro-acoustic radiation model for such a distributed constrained damping structure.The vibration and acoustic radiation of the circular plate is analyzed.In the analysis,the dynamic response of the system is obtained by using the 3D finite model superposition method.The obtained vibration response is used as the initial boundary condition in solving Helmholtz boundary integral equation for the sound radiation analysis.In the procedure,firstly,the modal analysis of the circular plate is performed to get the distribution of the system modal strain energy.Secondly,the vibro-acoustic radiation characteristics of the plate with different kinds of circumference damping ridges and radial damping ridges are compared in order to try to find the best effective damping ridge structure.Thirdly,using the distribution of the plate modal strain energy investigates the effect of the ridge distribution locations on the circular plate on its vibro-acoustic radiation.The calculation and analysis research results show that,the sticking circumference and radial damping ridges on the plate can control the vibro-acoustic radiation of the plate effectively in different frequency range.The distribution of the constrained damping ridge has an effect on reduction in vibro-acoustic radiation of the circular plate.The present research is very useful in the design of railway wheel with low noise level.
文摘To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.
基金Project supported by the National Natural Science Foundation of China (No. 60373023), and the Science and Technology Research Foundation of Hunan City University (No. 20057306), China
文摘Fingerprint segmentation is an important step in fingerprint recognition and is usually aimed to identify non-ridge regions and unrecoverable low quality ridge regions and exclude them as background so as to reduce the time expenditure of image processing and avoid detecting false features. In high and in low quality ridge regions, often are some remaining ridges which are the afterimages of the previously scanned finger and are expected to be excluded from the foreground. However, existing seg-mentation methods generally do not take the case into consideration, and often, the remaining ridge regions are falsely classified as foreground by segmentation algorithm with spurious features produced erroneously including unrecoverable regions as fore-ground. This paper proposes two steps for fingerprint segmentation aimed at removing the remaining ridge region from the fore-ground. The non-ridge regions and unrecoverable low quality ridge regions are removed as background in the first step, and then the foreground produced by the first step is further analyzed for possible remove of the remaining ridge region. The proposed method proved effective in avoiding detecting false ridges and in improving minutiae detection.
基金The work was supported by the National Science Council under Grant Nos . NSC 95-2221-E-366-001 and NSC 95-2218-E-132-001 .
文摘Fundamental experiments were carried out in a wave flume on internal solitary wave (ISW) of depression-type propagating over a submerged ridge. The seabed ridge included either triangular or semicircular shape - regarded as topographic obstacles. Influenced by the submarine ridge, the transmitted waves were found to always consist of a leading pulse (a solitary wave) followed by a dispersive wave train. The wave profile propagating over a triangular ridge was similar to that caused by a semicircular obstacle. Apparently, the smooth face of a semicircular ridge produced time lag of wave propagation. From experimental results available, the reduction in wave energy induced by a semicircular ridge was larger than that by a triangular one. The events of wave distortion, strong breaking, internal bolus, and stratification mixing happened in case that the crest of an ISW was great enough to interact with the topographic obstacle. The reduction in wave energy was induced by strong breaking, and it depended on the ridge height rather than the geometric shape of the ridge.
基金The Basic Scientific Fund for National Public Research Institutes of China under contract No.2015G07the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-GEOGE-02+4 种基金the National Natural Science Foundation of China under contract Nos 41506079,41576052,41506068,41322036 and 41776070the AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2015ASTP-ES16the Taishan Scholarship from Shandong Provincethe Research Grant of State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences under contract No.SKLIG-KF-14-03the China Postdoctoral Science Foundation under contract No.2016M592120
文摘Mid-ocean ridge basalts(MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of a peridotitic mantle and subsequently fractional crystallization. Geochemical diversity of MORBs have been attributed to large-scale heterogeneity within the underlying mantle, and the heterogeneity might have been caused by addition of recycled crustal component, subcontinental lithosphere, metasomatized lithosphere and outer core contribution. In this study, we investigated the MORBs along the Mid-Atlantic Ridge(MAR) by estimating the temperature and pressure of partial melting, and comprehensively comparing trace element and isotope ratios. The data for MORBs from areas close to mantle plumes show large variations. Mantle plumes can affect mid-oceanic ridges 1 400 km away, but plume effects did not cover all of the ridge segments, and those segments without plume effects did not have any abnormalities in temperature, trace element or isotope ratios.We ascribed the above phenomena to result from the shapes of the plume flow, which we categorized as "pipelike channels" and "pancake-like channels". The "pancake-like channels" plumes affected the ambient mantle nondirectionally, but the range of the mantle affected by the "pipe-like channels" plumes were selective. Element ratios of MORBs reveal that the mantle source of the MORBs along the MAR is highly heterogeneous. We suggest that most of source heterogeneities of the MORBs may be due to the presence of subducted slab and delaminated lower crust in the source. In addition, the plume that carried materials from the core-mantle boundary may affect some of the segments.
基金The National Science Fund for Distinguished Young Scholars of China under contract No.5142590the Nanjing Hydraulic Research Institute Foundation of China under contract No.Y215011
文摘The comparison of the underwater topographic data in recent four decades shows that main waterways of the radial sand ridges area in the southern Yellow Sea tend to gradually migrate southward(scour depth and southward extension of the main channels in Xiyang, southward approach of Lanshayang Waterway and Xiaomiaohong Waterway on South Flank). Although there are various hypotheses about the cause and mechanism of the overall southward migration of the radial sand ridges, no universal and reliable understanding has been obtained so far. The mechanism of this process becomes a challenging problem which serves a key issue in the morphodynamics of the radial sand ridges and the harbor construction in this area. On the basis of the shoreline positions and underwater terrains at different development stages of the Huanghe Delta coast in northern Jiangsu Province, China since the northward return of the Huanghe River and flowed into the Bohai Sea,combined with the tidal wave numerical simulation study, the characteristics and hydrodynamic changes of the tidal wave system in the southern Yellow Sea at different evolution stages are investigated. It is shown that due to the shoreline retreat and the erosion of underwater delta, tidal current velocity is enhanced, and the enhanced area gradually migrates southward. It is revealed that this southward migration of a large-scale regional hydrodynamic axis is possibly a dominant mechanism leading to the overall southward migration of the radial sand ridges.
文摘Lunar ridges are a kind of familiar linear structures developed on the lunar surface. The distribution pattern, formation mechanism and research significance of lunar ridges are discussed in this paper. Single lunar ridges are usually distributed in the form of broken lineation, and, as whole, lunar ridges are trapezoidal or annular in shape around the maria. As to the formation mechanism, only volcanism or tectonism was emphasized in the past, but the two processes are seldom taken into combined consideration. On the basis of detailed analyses, the authors thought that tectonism is a prerequisite for the formation of lunar ridges, while volcanism is the key factor controlling their particular shapes. Finally, the authors pointed out that it is very significant in the study of lunar ridges to link the course of lunar structure evolution with the stress state in the lunar crust.