期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The impact of land use/cover change on storage and quality of soil organic carbon in mid-subtropical mountainous area of southern China 被引量:21
1
作者 杨玉盛 谢锦升 +3 位作者 盛浩 陈光水 李旭 杨智杰 《Journal of Geographical Sciences》 SCIE CSCD 2009年第1期49-57,共9页
Land use/cover change (LUCC) is widely recognized as one of the most important driving forces of global carbon cycles. The influence of converting native forest into plantations, secondary forest, orchard and arable... Land use/cover change (LUCC) is widely recognized as one of the most important driving forces of global carbon cycles. The influence of converting native forest into plantations, secondary forest, orchard and arable land on stores and quality of soil organic carbon (SOC) was investigated in mid-subtropical mountainous area of southern China. The results showed that LUCC had led to great decreases in SOC stocks and quality. Considerable SOC and light-fraction organic carbon (LFOC) had been stored in the native forest (142.2 t hm^-2 and 14.8 t hm^-2 respectively). When the native forest was converted to plantations, secondary forest, orchard and arable land, the SOC stocks decreased by 25.6%, 28.7%, 38.0%, 31.8% and 51.2%, respectively. The LFOC stocks decreased by 52.2% to 57.2% when the native forest was converted to woodland plantations and secondary forest, and by 82.1% to 84.2% when converted to economic plantation, orchard and arable land. After the conversion, the ratios of LFOC to SOC (0-60 cm) decreased from 13.3% to about 3.0% to 10.7%. The SOC and LFOC stored at the upper 20 cm were more sensitive to LUCC when compared to the subsurface soil layer. Also, the decline in carbon storage induced by LUCC was greater than the global average level, it could be explained by the vulnerable natural environment and special human management practices. Thus, it is wise to enhance soil carbon sequestration, mitigate elevated atmospheric CO2 and develop ecological services by protecting vulnerable environment, restoring vegetation coverage, and afforesting in mountainous area in mid-subtropics. 展开更多
关键词 mid-subtropics LUCC soil organic carbon carbon quality
下载PDF
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case study in Jiangle County, southeast China 被引量:4
2
作者 Zhuo Lin Lin Chao +3 位作者 Chengzhen Wu Wei Hong Tao Hong Xisheng Hu 《Acta Geochimica》 EI CAS CSCD 2018年第1期90-101,共12页
The mid-subtropical forest is one of the biggest sections of subtropical forest in China and plays a vital role in mitigating climate change by sequestering carbon.Studies have examined carbon storage density(CSD) dis... The mid-subtropical forest is one of the biggest sections of subtropical forest in China and plays a vital role in mitigating climate change by sequestering carbon.Studies have examined carbon storage density(CSD) distribution in temperate forests. However, our knowledge of CSD in subtropical forests is limited. In this study, Jiangle County was selected as a study case to explore geographic variation in CSD. A spatial heterogeneity analysis by semivariogram revealed that CSD varied at less than the mesoscale(approximately 2000–3000 m). CSD distribution mapped using Kriging regression revealed an increasing trend in CSD from west to east of the study area.Global spatial autocorrelation analysis indicated that CSD was clustered at the village level(at 5% significance).Some areas with local spatial autocorrelation were detected by Anselin Local Moran's I and Getis-Ord G*. A geographically weighted regression model showed different impacts on the different areas for each determinant. Generally, diameter at breast height, tree height, and stand density had positive correlation with CSD in Jiangle County, but varied substantially in magnitude by location.In contrast, coefficients of elevation and slope ranged from negative to positive. Based on these results, we propose certain measures to increase forest carbon storage,including increasing forested area, improving the quality of the current forests, and promoting reasonable forest management decisions and harvesting strategies. The established CSD model emphasizes the important role of midsubtropical forest in carbon sequestration and provides useful information for quantifying mid-subtropical forest carbon storage. 展开更多
关键词 Carbon storage density GEOSTATISTICS mid-subtropical forests Spatial autocorrelation Spatial heterogeneity
下载PDF
Carbon Reserve Characteristics of Arbor Layer in Mid-subtropical Evergreen Broad-leaved Forest
3
作者 Zeng Zhangquan Wang Ying +4 位作者 Li Minghong Tang Hong Yang Rui Zhang Canming Zeng Xiahui 《Meteorological and Environmental Research》 CAS 2019年第4期81-83,共3页
In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial dis... In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial distribution characteristics. At different succession stages, the sequence of organic carbon content in each organ was secondary forest of P. massoniana > coniferous-broad-leaved mixed forest> broad-leaved evergreen forest. Carbon reserve of arbor layer was the highest in broad-leaved evergreen forest, which was 129.34 t/hm 2, followed by coniferous-broad-leaved mixed forest (95.83 t/hm 2), and the minimum was 85.27 t/hm 2 in secondary forest of P. massoniana . In each stand type, the sequence of carbon reserve of each organ in arbor layer was trunk>root>branch>leaf>bark. Carbon reserve of arbor layer mainly concentrated in trunk, and the proportion to carbon reserve of arbor layer declined from secondary forest of P. massoniana to broad-leaved evergreen forest, while it had increasing relationship in root. In secondary forest of P. massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest, individual with the diameter more than 20 cm accounted for the majority of carbon reserve in the arbor layer. 展开更多
关键词 EVERGREEN broad-leaved forest CARBON RESERVE of ARBOR LAYER mid-subtropical zone
下载PDF
Carbon storage of a subtropical forest ecosystem: a case study of the Jinggang Mountain National Nature Reserve in south-eastern China 被引量:3
4
作者 Jiping Zhang Linbo Zhang +2 位作者 Haiguang Hao Chunlan Liu Hui Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1011-1021,共11页
The carbon cycle of forest ecosystems plays a key role in regulating CO2 concentrations in the atmosphere. Research on carbon storage estimation of forest ecosystems has become a major research topic. However, carbon ... The carbon cycle of forest ecosystems plays a key role in regulating CO2 concentrations in the atmosphere. Research on carbon storage estimation of forest ecosystems has become a major research topic. However, carbon budgets of subtropical forest ecosystems have received little attention. Reports of soil carbon storage and topographic heterogeneity of carbon storage are limited. This study focused on the Jinggang Mountain National Nature Reserve as an example of a mid-subtropical forest and evaluated soil and vegetation carbon storage by field sampling combined with GIS, RS and GPS technology. We classified the forest into nine forest types using ALOS high-resolution remote sensing images. The evergreen broad-leaved forest has the largest area, occupying 26.5% of the total area, followed by coniferous and broad-leaved mixed forests and warm temperate coniferous forest, occupying 24.2 and 22.9%, respectively. The vegetation and soil carbon storage of the whole forest ecosystem were 1,692,344 and 5,514,707 t, with a carbon density of 7.4 and 24.2 kg/m^2, respectively, which suggests that the ecosystem has great carbon storage capacity. The topographic heterogeneity of the carbon storage was also analysed. The largest vegetation storage and soil storage is at 700–800 and 1000–1100 m, respectively. The vegetation carbon storage is highest in the southeast, south and southwest. 展开更多
关键词 Vegetation CARBON STORAGE Soil CARBON STORAGE mid-subtropical forest ecosystem Jinggang MOUNTAIN National Nature Reserve
下载PDF
Biomass Characteristics of the Arbor Layer in Different Stands of the Evergreen Broad-Leaved Forest
5
作者 ZENG Zhangquan TANG Hong +4 位作者 LI Minghong YANG Rui ZHANG Canming WANG Ying ZENG Xiahui 《Journal of Landscape Research》 2019年第3期105-106,109,共3页
In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succe... In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succession were studied, and the biomass and its spatial distribution characteristics of the tree layer in different succession stages of the ecosystem were discussed. The results showed that the biomass of the arbor layer was the highest in the evergreen broad-leaved forest, which was 292.51 t/ hm2, followed by the coniferous and broad-leaved mixed forest, which was 206.87 t/hm2, and the Pinus massoniana forest, which was 171.76 t/hm2. The biomass of trunks accounted for the largest proportion in the total biomass of the arbor layer, which reduced from the Pinus massoniana forest to the evergreen broad-leaved forest. The proportion of the biomass of roots in the total biomass of the arbor layer increased from the Pinus massoniana forest to the evergreen broad-leaved forest. The biomass of the diameter class above 20 cm in the Pinus massoniana forest, the coniferous and broad-leaved mixed forest and the evergreen broad-leaved forest accounted for a large proportion of total biomass. 展开更多
关键词 EVERGREEN broad-leaved forest Biomass of the ARBOR LAYER mid-subtropics SUCCESSION stage
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部