The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal traject...The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal trajectory modification capability aiming at the consistently updating predicted impact point(PIP) in the midcourse phase. A novel midcourse optimal trajectory cluster generation and trajectory modification algorithm is proposed based on the neighboring optimal control theory. Firstly, the midcourse trajectory optimization problem is introduced; the necessary conditions for the optimal control and the transversality constraints are given.Secondly, with the description of the neighboring optimal trajectory existence theory(NOTET), the neighboring optimal control(NOC)algorithm is derived by taking the second order partial derivations with the necessary conditions and transversality conditions. The revised terminal constraints are reversely integrated to the initial time and the perturbations of the co-states are further expressed with the states deviations and terminal constraints modifications.Thirdly, the simulations of two different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.展开更多
An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of...An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of the proportional navigation in terminal guidance is analyzed and innovatively introduced in the midcourse trajectory planning problems, with the collision triangle(CT) serving as the ideal terminal states parameters of the midcourse phase, and the CR area serving as the robustness against target maneuvers. Secondly, the midcourse trajectory planning problem that considers the path, terminal and control constraints is formulated and the well-developed GPM is used to generate the nominal trajectory that meets the CR demands. The interceptor will reshape the trajectory only when the former CR fails to cover the target, which has loosened the critical demand for frequent trajectory modification. Finally, the simulations of four different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.展开更多
This paper proposes a multiple-constraints-guaranteed midcourse guidance law for the interception of the hypersonic targets. In traditional midcourse law design, the constraints of the aero-thermal heating are rarely ...This paper proposes a multiple-constraints-guaranteed midcourse guidance law for the interception of the hypersonic targets. In traditional midcourse law design, the constraints of the aero-thermal heating are rarely taken into consideration. The performance of the infrared detection system may be degraded and the instability of the flight control system may be induced.To address this problem, a state-constrained model predictive static programming method is introduced such that both terminal constraints(position and angle) and optimal energy consumption can be ensured. As a result, a sub-optimal midcourse guidance,guaranteeing the aforementioned multiple-constraints to be never violated, is synthesized. Simulation results demonstrate the effectiveness of the proposed method.展开更多
The applied problems of SINS/GPS integration navigation system existing in midcourse guidance of air to air missiles have been investigated recently. In comparison with those investigations existing in current publi...The applied problems of SINS/GPS integration navigation system existing in midcourse guidance of air to air missiles have been investigated recently. In comparison with those investigations existing in current publications, a new tightly coupled SINS/GPS integration navigation system for air to air missiles, based on the decorrelated pseudo range approach, is presented in this paper. Because of high jamming and dynamic of air to air missiles, inertial velocity aiding GPS receiver is used to provide a more accurate, jam resistant measurement for midcourse guidance systems. A tracking error estimator is designed to distinguish the correlation that existed between pseudo range measurements and inertial information. It is found better to regard inertial velocity aiding errors as the noise of which statistical properties are unknown. So using mixed Kalman/minimax filtering theory, one can obtain the new tracking error estimator with simple and robust algorithm through constructing a composite filter consisting of two parts: Kalman filter for the noise of known statistics and minimax filter for the unknown. In order to ensure this simple estimator stability, a new method is proposed to choose its parameters, based on Khargonekars work. Moreover, it is demonstrated that the given method also ensures the proposed estimator optimality. All the work mentioned above is involved in the tightly coupled SINS/GPS integration midcourse system design in which a set of low accuracy inertial components is shared by SINS and autopilot. Simulation results of a certain type of air to air missile are presented. Due to decorrelation by the tracking error estimator, only small white noise of pseudo range measurements remains. So it is shown that application of the new midcourse guidance system results in better guidance accuracy, higher jam resistance.展开更多
中段伴飞突防造成的各种有源或无源的弹道群目标会给雷达跟踪系统带来极大的挑战,导致其跟踪非本体实体目标或电假目标,从而出现关联错误的情况。中段实体弹道目标满足动力学守恒定律,可以充分利用该特性来改善跟踪系统的数据关联机制,...中段伴飞突防造成的各种有源或无源的弹道群目标会给雷达跟踪系统带来极大的挑战,导致其跟踪非本体实体目标或电假目标,从而出现关联错误的情况。中段实体弹道目标满足动力学守恒定律,可以充分利用该特性来改善跟踪系统的数据关联机制,因此提出一种基于动力学守恒定律的弹道目标概率数据关联(probability data association,PDA)方法,即在传统关联门筛选出有效量测的基础上,对动量矩和机械能进行联合统计检验,进一步剔除电假目标点迹或其他错误量测,并使用动量矩和机械能对加权关联概率进行修正。蒙特卡罗仿真验证了该方法的有效性。仿真结果表明,与传统PDA方法相比,所提方法能够有效抑制有源距离欺骗干扰和杂波的影响,提高跟踪精度。展开更多
基金supported by the National Natural Science Foundation of China(6150340861573374)
文摘The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal trajectory modification capability aiming at the consistently updating predicted impact point(PIP) in the midcourse phase. A novel midcourse optimal trajectory cluster generation and trajectory modification algorithm is proposed based on the neighboring optimal control theory. Firstly, the midcourse trajectory optimization problem is introduced; the necessary conditions for the optimal control and the transversality constraints are given.Secondly, with the description of the neighboring optimal trajectory existence theory(NOTET), the neighboring optimal control(NOC)algorithm is derived by taking the second order partial derivations with the necessary conditions and transversality conditions. The revised terminal constraints are reversely integrated to the initial time and the perturbations of the co-states are further expressed with the states deviations and terminal constraints modifications.Thirdly, the simulations of two different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.
基金supported by the National Natural Science Foundation of China(6157337461503408)
文摘An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of the proportional navigation in terminal guidance is analyzed and innovatively introduced in the midcourse trajectory planning problems, with the collision triangle(CT) serving as the ideal terminal states parameters of the midcourse phase, and the CR area serving as the robustness against target maneuvers. Secondly, the midcourse trajectory planning problem that considers the path, terminal and control constraints is formulated and the well-developed GPM is used to generate the nominal trajectory that meets the CR demands. The interceptor will reshape the trajectory only when the former CR fails to cover the target, which has loosened the critical demand for frequent trajectory modification. Finally, the simulations of four different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.
基金supported by the National Natural Science Foundation of China(61503302)the joint fund of the National Natural Science Foundation Committee and China Academy of Engineering Physics(U1630127)
文摘This paper proposes a multiple-constraints-guaranteed midcourse guidance law for the interception of the hypersonic targets. In traditional midcourse law design, the constraints of the aero-thermal heating are rarely taken into consideration. The performance of the infrared detection system may be degraded and the instability of the flight control system may be induced.To address this problem, a state-constrained model predictive static programming method is introduced such that both terminal constraints(position and angle) and optimal energy consumption can be ensured. As a result, a sub-optimal midcourse guidance,guaranteeing the aforementioned multiple-constraints to be never violated, is synthesized. Simulation results demonstrate the effectiveness of the proposed method.
文摘The applied problems of SINS/GPS integration navigation system existing in midcourse guidance of air to air missiles have been investigated recently. In comparison with those investigations existing in current publications, a new tightly coupled SINS/GPS integration navigation system for air to air missiles, based on the decorrelated pseudo range approach, is presented in this paper. Because of high jamming and dynamic of air to air missiles, inertial velocity aiding GPS receiver is used to provide a more accurate, jam resistant measurement for midcourse guidance systems. A tracking error estimator is designed to distinguish the correlation that existed between pseudo range measurements and inertial information. It is found better to regard inertial velocity aiding errors as the noise of which statistical properties are unknown. So using mixed Kalman/minimax filtering theory, one can obtain the new tracking error estimator with simple and robust algorithm through constructing a composite filter consisting of two parts: Kalman filter for the noise of known statistics and minimax filter for the unknown. In order to ensure this simple estimator stability, a new method is proposed to choose its parameters, based on Khargonekars work. Moreover, it is demonstrated that the given method also ensures the proposed estimator optimality. All the work mentioned above is involved in the tightly coupled SINS/GPS integration midcourse system design in which a set of low accuracy inertial components is shared by SINS and autopilot. Simulation results of a certain type of air to air missile are presented. Due to decorrelation by the tracking error estimator, only small white noise of pseudo range measurements remains. So it is shown that application of the new midcourse guidance system results in better guidance accuracy, higher jam resistance.
文摘中段伴飞突防造成的各种有源或无源的弹道群目标会给雷达跟踪系统带来极大的挑战,导致其跟踪非本体实体目标或电假目标,从而出现关联错误的情况。中段实体弹道目标满足动力学守恒定律,可以充分利用该特性来改善跟踪系统的数据关联机制,因此提出一种基于动力学守恒定律的弹道目标概率数据关联(probability data association,PDA)方法,即在传统关联门筛选出有效量测的基础上,对动量矩和机械能进行联合统计检验,进一步剔除电假目标点迹或其他错误量测,并使用动量矩和机械能对加权关联概率进行修正。蒙特卡罗仿真验证了该方法的有效性。仿真结果表明,与传统PDA方法相比,所提方法能够有效抑制有源距离欺骗干扰和杂波的影响,提高跟踪精度。