An orogenic belt developed in late middle Proterozoic in the northern margin of North China Plate extends from Inner Mongolia to Western Liaoning Province and Eastern Jilin Province.It is over 2000km long. The orogeni...An orogenic belt developed in late middle Proterozoic in the northern margin of North China Plate extends from Inner Mongolia to Western Liaoning Province and Eastern Jilin Province.It is over 2000km long. The orogenic belt was formed by collision between North China Platform and Siberia Platform during the Rodinian Super-Continent period. From sedimentary formation, magmatic activity and crustal tectonic deformation, it is suggested that along the tectonic belt the paleocontinental margin experienced four stages of tectonic evolution in middle Proterozoic, they are: continental margin rift, passive continental margin, active continental margin and collisional orogenic stages.展开更多
According to Ihe combinations of mctallogcnetic elements and minerals assemblages,the Au-Ag deposits in the Middle-Upper Proterozoic Suberathcm of the middle of northern margin of Yangtze Platform could be classified ...According to Ihe combinations of mctallogcnetic elements and minerals assemblages,the Au-Ag deposits in the Middle-Upper Proterozoic Suberathcm of the middle of northern margin of Yangtze Platform could be classified into four types,(l)Au-Ag-Pb-Zn type,(2)Au-Ag-Te type,(3)Au-quartz vein type,(4)Au-Ag-Pb-Zn-Ba type.The Yangpin formation and the upper Dangyuhe subformation,which belong to Wudangshan group,are regarded as favorable strata for Au-Ag mineralization by systematic assessments for Au-Ag bearing ability of the strata,as well as the felsic rocks of Bikou group.The mctallogcnetic physicochemical conditions and the stable isotopic compositions(S.Pb,H.O,C)have been studied in this paper.The sources of metallogenetic materials,origins of fluids and genesis of various deposits have also been studied.展开更多
Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ag...Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ages of the established Middle and Upper Proterozoic sequence stratigraphic framework in the Ming Tombs area lying in western Yanshan Mountain of Beijing. Besides, sketchy determination of δ13C and δ18O was also performed for other formations and members. The analytical results show the following: under the condition of clear-water carbonate sediments, δ13C and δ18O, featuring smaller variation of δ13C but larger variation of δ18O, can well delineate the relative change of sea level, which reflects the difference of primary sedimentary settings; in the presence of terrigenous substances, δ13C values vary greatly while δ18O slightly; the carbon and oxygen isotopes show marked changes at sequence boundaries. Besides, particular patterns can be found in regard to the distribution of carbon and oxygen isotopes within the sequences.展开更多
The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristi...The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.展开更多
The semi-closed pyrolysis simulation system under constant pressure was conducted to explore the characteristics and mechanisms of hydrocarbon generation from Xiamaling Formation shale in Xiahuayuan,North China.The ex...The semi-closed pyrolysis simulation system under constant pressure was conducted to explore the characteristics and mechanisms of hydrocarbon generation from Xiamaling Formation shale in Xiahuayuan,North China.The experiment results indicate the oil generated by the Xiamaling Formation shale in oil window should be classified as "aromatic-intermediate" type,whereas the decreasing of dry coefficient can be ascribed to the cracking of residual bitumen in source rock in the stage of high to post maturity.The amount of hydrocarbon gas generated from residual bitumen can be up to 1-2 m3 per ton rock in high to post mature stage by calculating hydrogen contents in the kerogen,the expelled hydrocarbon,and the residual hydrocarbon.This reveals the importance of residual bitumen as a gas source during high to post mature stage of the kerogen evolution,and also as the broad exploration prospect of these gases.This research highlights the attention should be paid to oil/gas reservoirs sourced from residual bitumen of organic-rich source rock in high mature stage,even the primary oil/gas reservoirs considered as the main exploration targets in middle-upper Proterozoic sediments of North China.展开更多
文摘An orogenic belt developed in late middle Proterozoic in the northern margin of North China Plate extends from Inner Mongolia to Western Liaoning Province and Eastern Jilin Province.It is over 2000km long. The orogenic belt was formed by collision between North China Platform and Siberia Platform during the Rodinian Super-Continent period. From sedimentary formation, magmatic activity and crustal tectonic deformation, it is suggested that along the tectonic belt the paleocontinental margin experienced four stages of tectonic evolution in middle Proterozoic, they are: continental margin rift, passive continental margin, active continental margin and collisional orogenic stages.
文摘According to Ihe combinations of mctallogcnetic elements and minerals assemblages,the Au-Ag deposits in the Middle-Upper Proterozoic Suberathcm of the middle of northern margin of Yangtze Platform could be classified into four types,(l)Au-Ag-Pb-Zn type,(2)Au-Ag-Te type,(3)Au-quartz vein type,(4)Au-Ag-Pb-Zn-Ba type.The Yangpin formation and the upper Dangyuhe subformation,which belong to Wudangshan group,are regarded as favorable strata for Au-Ag mineralization by systematic assessments for Au-Ag bearing ability of the strata,as well as the felsic rocks of Bikou group.The mctallogcnetic physicochemical conditions and the stable isotopic compositions(S.Pb,H.O,C)have been studied in this paper.The sources of metallogenetic materials,origins of fluids and genesis of various deposits have also been studied.
文摘Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ages of the established Middle and Upper Proterozoic sequence stratigraphic framework in the Ming Tombs area lying in western Yanshan Mountain of Beijing. Besides, sketchy determination of δ13C and δ18O was also performed for other formations and members. The analytical results show the following: under the condition of clear-water carbonate sediments, δ13C and δ18O, featuring smaller variation of δ13C but larger variation of δ18O, can well delineate the relative change of sea level, which reflects the difference of primary sedimentary settings; in the presence of terrigenous substances, δ13C values vary greatly while δ18O slightly; the carbon and oxygen isotopes show marked changes at sequence boundaries. Besides, particular patterns can be found in regard to the distribution of carbon and oxygen isotopes within the sequences.
基金financially supported by National Natural Science Foundation of China(42272106,41202067)Open Fund of State Key Laboratory for Mineral Deposits Research,Nanjing University(2019-LAMD-K12)China Geological Survey(DD20211386,DD20211392,DD20179603).
文摘The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.
基金supported by National Natural Science Foundation of China(Grant Nos.40972093 and 41172112)Natural Science Foundation of Zhejiang Province(Grant No.R5080124)+1 种基金Foundation of State Key Laboratory of Enhanced Oil Recoverythe Foundation of State Key Laboratory of Petroleum Resource and Prospecting(Grant No.2009001)
文摘The semi-closed pyrolysis simulation system under constant pressure was conducted to explore the characteristics and mechanisms of hydrocarbon generation from Xiamaling Formation shale in Xiahuayuan,North China.The experiment results indicate the oil generated by the Xiamaling Formation shale in oil window should be classified as "aromatic-intermediate" type,whereas the decreasing of dry coefficient can be ascribed to the cracking of residual bitumen in source rock in the stage of high to post maturity.The amount of hydrocarbon gas generated from residual bitumen can be up to 1-2 m3 per ton rock in high to post mature stage by calculating hydrogen contents in the kerogen,the expelled hydrocarbon,and the residual hydrocarbon.This reveals the importance of residual bitumen as a gas source during high to post mature stage of the kerogen evolution,and also as the broad exploration prospect of these gases.This research highlights the attention should be paid to oil/gas reservoirs sourced from residual bitumen of organic-rich source rock in high mature stage,even the primary oil/gas reservoirs considered as the main exploration targets in middle-upper Proterozoic sediments of North China.