Using a 23-year database consisting of sea level pressure, surface air temperature and sea surface temperature, the authors studied southern high latitude climate anomalies associated with IOD (Indian Ocean Dipole). C...Using a 23-year database consisting of sea level pressure, surface air temperature and sea surface temperature, the authors studied southern high latitude climate anomalies associated with IOD (Indian Ocean Dipole). Correlation analysis of the spatial variability regarding monthly sea level pressure, surface air tempera- ture, and sea surface temperature anomalies with IOD index suggests that IOD signal exists in southern high latitudes. The correlation fields exhibit a wavenumber-3 pattern around the circumpolar Southern Ocean. Lead-lag correlation analysis on the strongest correlation areas with IOD index shows that IOD in the tropical Indian Ocean responses to the southern high latitude climate almost instantaneously. It is proposed in the present paper that this connection is realized through atmospheric propagation rather than through oceanic one.展开更多
Climate anomalies in the southern high latitude associated with the Subtropical Dipole Mode (SDM) are investigated using a 23-year database consisting of SLP (sea level pressure), surface air temperature (SAT) and sea...Climate anomalies in the southern high latitude associated with the Subtropical Dipole Mode (SDM) are investigated using a 23-year database consisting of SLP (sea level pressure), surface air temperature (SAT) and sea surface temperature (SST). The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the Subtropical Dipole Mode Index (SDI). It suggests that the SDM signal exists in the southern high latitudes and the correlation fields exhibit a wavenumber-3 pattern around the circumpolar Southern Ocean. Lead-lag correlation analysis used to the SLP, SAT, and SST anomalies with the SDI time series at the positive and negative correlation extremes shows that the southern-high-latitude climate responses to SDM almost instantaneously proposing the connection is by atmospheric and not by oceanic propagation.展开更多
Using a global atmosphere-ocean coupled model with the present-day and 14 MaB.P. oceanic topogra- phy respectively, two experiments are implemented to inves- tigate the effect of different locations of Australian Plat...Using a global atmosphere-ocean coupled model with the present-day and 14 MaB.P. oceanic topogra- phy respectively, two experiments are implemented to inves- tigate the effect of different locations of Australian Plate on the atmospheric circulation in middle-high latitudes of the Southern Hemisphere. The results show that when Austra- lian Plate lay south at 14 MaB.P., both anticyclone circula- tions in the subtropical oceans and cyclone circulation around 60°-70°S are strengthened. Subtropical highs and circumpolar low pressure appear stronger, which results in much stronger Antarctic Oscillation and shorter period of Antarctic Oscillation Index (AOI) at 14 MaB.P. The rainfall and the surface air temperature also change correspondingly. The precipitation decreases around 40°S and increases around 60°-70°S, and the surface air temperature rises in high latitudes of the South Pacific and descends over the Weddell Sea and its north side. Besides, due to the changes of the temperatures and winds, Antarctic sea ice coverage also changes with its increasing in the Ross Sea and its west re- gions and decreasing in the Weddell Sea.展开更多
文摘Using a 23-year database consisting of sea level pressure, surface air temperature and sea surface temperature, the authors studied southern high latitude climate anomalies associated with IOD (Indian Ocean Dipole). Correlation analysis of the spatial variability regarding monthly sea level pressure, surface air tempera- ture, and sea surface temperature anomalies with IOD index suggests that IOD signal exists in southern high latitudes. The correlation fields exhibit a wavenumber-3 pattern around the circumpolar Southern Ocean. Lead-lag correlation analysis on the strongest correlation areas with IOD index shows that IOD in the tropical Indian Ocean responses to the southern high latitude climate almost instantaneously. It is proposed in the present paper that this connection is realized through atmospheric propagation rather than through oceanic one.
基金supported by the National Natural Science Foundation of China(Grant No:40231013).
文摘Climate anomalies in the southern high latitude associated with the Subtropical Dipole Mode (SDM) are investigated using a 23-year database consisting of SLP (sea level pressure), surface air temperature (SAT) and sea surface temperature (SST). The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the Subtropical Dipole Mode Index (SDI). It suggests that the SDM signal exists in the southern high latitudes and the correlation fields exhibit a wavenumber-3 pattern around the circumpolar Southern Ocean. Lead-lag correlation analysis used to the SLP, SAT, and SST anomalies with the SDI time series at the positive and negative correlation extremes shows that the southern-high-latitude climate responses to SDM almost instantaneously proposing the connection is by atmospheric and not by oceanic propagation.
基金supported jointly by the National Natural Science Foundation of China (Grant Nos.40231011 and 40125014)the National Key Basic Research Project of China(Grant No.G2000078502).
文摘Using a global atmosphere-ocean coupled model with the present-day and 14 MaB.P. oceanic topogra- phy respectively, two experiments are implemented to inves- tigate the effect of different locations of Australian Plate on the atmospheric circulation in middle-high latitudes of the Southern Hemisphere. The results show that when Austra- lian Plate lay south at 14 MaB.P., both anticyclone circula- tions in the subtropical oceans and cyclone circulation around 60°-70°S are strengthened. Subtropical highs and circumpolar low pressure appear stronger, which results in much stronger Antarctic Oscillation and shorter period of Antarctic Oscillation Index (AOI) at 14 MaB.P. The rainfall and the surface air temperature also change correspondingly. The precipitation decreases around 40°S and increases around 60°-70°S, and the surface air temperature rises in high latitudes of the South Pacific and descends over the Weddell Sea and its north side. Besides, due to the changes of the temperatures and winds, Antarctic sea ice coverage also changes with its increasing in the Ross Sea and its west re- gions and decreasing in the Weddell Sea.