The Berezovsk coal mine in western Siberia has yielded the most diverse Middle Jurassic limnic and terrestrial vertebrate assemblage of Asia. The vertebrate remains were recovered by screen washing from floodplain dep...The Berezovsk coal mine in western Siberia has yielded the most diverse Middle Jurassic limnic and terrestrial vertebrate assemblage of Asia. The vertebrate remains were recovered by screen washing from floodplain deposits on top of a thick coal seam of the Bathonian Itat Formation. A total of 29 vertebrate taxa has been recorded so far,including hybodontiform sharks,acipenseriforms,palaeonisciforms,amiiforms,dipnoans,anurans,caudates,turtles,squamates,choristoderans,crocodyliforms,pterosaurs,dinosaurs,tritylodontids,and a diverse mammaliaform and mammalian assemblage( eleutherodontids,docodontans,? amphilestids,dryolestids,and zatherians). The caudates are among the oldest in the fossil record and the anurans represent the oldest Asian record of this group. Among the mammals,Anthracolestes is the oldest and most basal known member of Dryolestidae and so far the only record from Asia. The vertebrate assemblage from the Berezovsk coal mine is very similar to that from the British Forest Marble Formation( Bathonian) and suggests a limited provincialism in the Middle Jurassic Laurasian landmass.展开更多
The associated minerals make coal middlings possess a relatively high ash content.Subsequent liberation through size reduction can cause recovery increase.However,effect of comminution facilities on mineral liberation...The associated minerals make coal middlings possess a relatively high ash content.Subsequent liberation through size reduction can cause recovery increase.However,effect of comminution facilities on mineral liberation of middlings was ignored.This paper studied the liberation characteristics of middlings crushed with different kinds of fragmentation forces.Middlings of 3 mm+0.5 mm sampled from a dense medium cyclone were comminuted by a jaw crusher and a ball mill to 0.5 mm with similar size distribution respectively.The generating mechanism of fnes was also analyzed.Full densimetric analyses indicate that mineral liberation of the product crushed by the jaw crusher is better than that by the ball mill at each fraction.For sizes of 0.125 mm+0.074 mm and 0.074 mm,yields of the product with ash content 11%comminuted by jaw crusher are nearly 20%higher than that by the ball mill.Sectional micrographs observed by the scanning electron microscopy(SEM)also show the same law for these two fractions and some intergrowth particles still exist in the fraction of 0.5 mm+0.25 mm.展开更多
Pores and fractures and their connectivity play a significant role in coalbed methane production.To investigate the growth characteristics and connectivity of pores and fractures in coal parallel and perpendicular to ...Pores and fractures and their connectivity play a significant role in coalbed methane production.To investigate the growth characteristics and connectivity of pores and fractures in coal parallel and perpendicular to the bedding plane,the pores and fractures of high-rank coal samples collected from the southern Qinshui Basin were measured by low-field nuclear magnetic resonance,X-ray-computed tomography and field emission scanning electron microscopy.Then,the determinants of their connectivity were further discussed.The results show that the high-rank coal samples have similar pore size distributions both parallel and perpendicular to the bedding plane.They primarily contain mesopores(2-50 nm in width),followed by macrospores(> 50 nm in width).The research indicated that the high-rank coal connectivity parallel to the bedding plane is significantly better than that perpendicular to the bedding plane.The connectivity of high-rank coal is mainly determined by throats,and the orientation of the pores and fractures.The two connectivity modes in high-rank coal are "pore connectivity," in which the throats are mainly pores with a low coordination number,and "microfissure connectivity",in which the throats are mainly microfissures with a high coordination number.展开更多
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser...Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.展开更多
A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of D...A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.展开更多
Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the ...Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.展开更多
In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of mater...In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of material structures of high-rank Carboniferous period coal, located in the northern foreland basin of the Dabie orogenic belt in eastern China. High powered crystal lattice images of Bright Fields (BF) and Selected Area Diffraction patterns (SAD) of different types of metamorphism in coal were obtained. The results show that the Basic Structural Units (BSU) become increasingly more compact as a function of rising tem-perature and pressure. Under pressure, the local orientation of molecules is strengthened, the arrangement of BSU speeds up and the degree of order is clearly enhanced.展开更多
Multiple sets of thick coal beds characterized by simple structure and shallow burial depth were developed in the Early and Middle Jurassic strata of the Ordos Basin, northwestern China. The huge reserves of this high...Multiple sets of thick coal beds characterized by simple structure and shallow burial depth were developed in the Early and Middle Jurassic strata of the Ordos Basin, northwestern China. The huge reserves of this high quality coal have a high commercial value. We studied the coal's petrologic characteristics and its maceral distribution to determine the maceral's contribution to generation of oil and gas. The results show that the Jurassic coals in the Ordos Basin have special petrological features because of the Basin's unique depo- sitional environment which was mainly a series of high-stand swamps in the upper fluvial system. These petro- graphic features are a result of the development of typical inland lakes where some sand bodies were formed by migrating rivers. After burial, the peat continued to undergo oxidizing conditions, this process generated extensive higher inertinite contents in the coals and the vitrinite components were altered to semi-vitrinite. The macroscopic petrographic types of these Jurassic coals are mainly semi-dull coal, dull coal, semilustrous and lustrous coal. The proportions of semi-dull coal and dull coal are higher in the basin margins, especially in the area near the northern margin. The numbers of semilustrous and lustrous coals increase southwards and towards the central basin. This situation indicates that different coal-forming swamp environments have major controlling effects on the coal components. Another observation is that in the Ordos' coal sequences, especially in the lower part, some sandstone beds are thick, up to 20 m with a coarse grain size. The higher fusinite content in the macerals accompanies a higher semi-vitrinite content with more complete and regular plant cell structure. The fusinite structure is clear and well preserved. After burial, the lithology of the roof and floor rocks can continue to affect the evolution of coal petrology. The sand bodies in the roof and floor exhibit good physical conditions so that pore water can maintain a long-term state of oxidation, circulation and connection to the coal. So coal components remain in an oxidation environment for a long time. Conversely, in the basin center, lacustrine facies developed and peat was rapidly covered by mudstone after burial and subsequent coal beds rapidly entered a reducing environment. As a result, abundant gelatification occurred and the vitrinite content increased. E^inite often accumulated in a specific position in the coal bed. Although the average exinite content is not high on the whole, it does significantly contribute to the total hydrocarbon generation. The exinite content has been underestimated, especially the amorphous bituminous fluid and its importance is emphasized here. The reason is that the fluid flows easily into fusinite which has strong rigidity, or flows into some fissures, where it is commonly neglected.展开更多
In this paper,the heterogeneity of adsorption pores in middle and high rank coal samples were analyzed by using low temperature N2 and CO2 adsorption technology and fractal theory.The following results were achieved.1...In this paper,the heterogeneity of adsorption pores in middle and high rank coal samples were analyzed by using low temperature N2 and CO2 adsorption technology and fractal theory.The following results were achieved.1)According to the results of volume and surface fractal dimension,meso-pores can be classified into Mep-1,Mep-2,and Mep-3,respectively.Micro-pore can be classified into Mip-1,Mip-2,and Mip-3,respectively.2)Pore types play an important role in affecting the heterogeneity of meso-pores.The volume heterogeneity(VHY)of Mep-1 is simpler than that of Mep-2 and Mep-3 in type A samples.However,the VHY of Mep-1 becomes gradually larger than that of Mep-2 and Mep-3 from type A to type B and C.The VHY of open pore in the same diameter is higher than that of semi-open or closed pore.Meanwhile,the surface heterogeneity(SHY)of types A and B samples is significantly larger than that of type C,the SHY of semi-open or closed pores is more complicated than that of open pores.3)Coal rank mainly affects the heterogeneity of micro-pores.The heterogeneity of type A is always smaller than that of type B and C.The VHY of Mip-1 is more complicated than that of Mip-2 and Mip-3 in the same samples,and the sensitivity of the VHY of Mip-1 and Mip-2 to the degree of coal rank is smaller than that of Mip-3.Meanwhile,the SHY of Mip-1 and Mip-2 is simpler than that of Mip-3 in the same sample,the SHY of micro-pores remains stable as the pore size decreases,and the affect of coalification level on SHY decreases with the decrease in pore diameter.Full-scale fractal characterization has enabled quantitative characterization of adsorption pore properties and provided useful information with regards to the similarity of pore features in different coal reservoirs.展开更多
基金Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG) (grant MA 1643 /14-1. 2)the Board of the President of the Russian Federation ( MD-802 . 2009 . 4 )+1 种基金the Russian Foundation for Basic Research ( projects 07 -04 -00393 ,10 -04 -01350 ,13 -04 -01401 ,and 11 -04 -91331 -NNIO)the Program of the Presidium of the Russian Academy of Sciences “Origin of the Life and Establishment of Biosphere
文摘The Berezovsk coal mine in western Siberia has yielded the most diverse Middle Jurassic limnic and terrestrial vertebrate assemblage of Asia. The vertebrate remains were recovered by screen washing from floodplain deposits on top of a thick coal seam of the Bathonian Itat Formation. A total of 29 vertebrate taxa has been recorded so far,including hybodontiform sharks,acipenseriforms,palaeonisciforms,amiiforms,dipnoans,anurans,caudates,turtles,squamates,choristoderans,crocodyliforms,pterosaurs,dinosaurs,tritylodontids,and a diverse mammaliaform and mammalian assemblage( eleutherodontids,docodontans,? amphilestids,dryolestids,and zatherians). The caudates are among the oldest in the fossil record and the anurans represent the oldest Asian record of this group. Among the mammals,Anthracolestes is the oldest and most basal known member of Dryolestidae and so far the only record from Asia. The vertebrate assemblage from the Berezovsk coal mine is very similar to that from the British Forest Marble Formation( Bathonian) and suggests a limited provincialism in the Middle Jurassic Laurasian landmass.
基金supported financially by the National Natural Science Foundation of China(No.5107415651274196 and51221462)the Natural Youth Science Foundation of China(No.51104160)
文摘The associated minerals make coal middlings possess a relatively high ash content.Subsequent liberation through size reduction can cause recovery increase.However,effect of comminution facilities on mineral liberation of middlings was ignored.This paper studied the liberation characteristics of middlings crushed with different kinds of fragmentation forces.Middlings of 3 mm+0.5 mm sampled from a dense medium cyclone were comminuted by a jaw crusher and a ball mill to 0.5 mm with similar size distribution respectively.The generating mechanism of fnes was also analyzed.Full densimetric analyses indicate that mineral liberation of the product crushed by the jaw crusher is better than that by the ball mill at each fraction.For sizes of 0.125 mm+0.074 mm and 0.074 mm,yields of the product with ash content 11%comminuted by jaw crusher are nearly 20%higher than that by the ball mill.Sectional micrographs observed by the scanning electron microscopy(SEM)also show the same law for these two fractions and some intergrowth particles still exist in the fraction of 0.5 mm+0.25 mm.
基金supported by the Fundamental Research Funds for the Central Universities (No.2017XKQY017)。
文摘Pores and fractures and their connectivity play a significant role in coalbed methane production.To investigate the growth characteristics and connectivity of pores and fractures in coal parallel and perpendicular to the bedding plane,the pores and fractures of high-rank coal samples collected from the southern Qinshui Basin were measured by low-field nuclear magnetic resonance,X-ray-computed tomography and field emission scanning electron microscopy.Then,the determinants of their connectivity were further discussed.The results show that the high-rank coal samples have similar pore size distributions both parallel and perpendicular to the bedding plane.They primarily contain mesopores(2-50 nm in width),followed by macrospores(> 50 nm in width).The research indicated that the high-rank coal connectivity parallel to the bedding plane is significantly better than that perpendicular to the bedding plane.The connectivity of high-rank coal is mainly determined by throats,and the orientation of the pores and fractures.The two connectivity modes in high-rank coal are "pore connectivity," in which the throats are mainly pores with a low coordination number,and "microfissure connectivity",in which the throats are mainly microfissures with a high coordination number.
基金Projects(41330638,41272154)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaProject(2014M551705)supported by the China Postdoctoral Science Foundation
文摘Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.
基金Supported by the China National Science and Technology Major Project(2017ZX05064)
文摘A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.
基金Supported by the“Tianshan Talent”Project of Xinjiang(2022TSYCLJ0070)CNPC Technology Project(2023ZZ18)。
文摘Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.
基金support for this work, provided by the National Natural Science Foundation of China (No40872105)the Scientific Research Foundation of the North China Institute of Science Technology (NoA08002)
文摘In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of material structures of high-rank Carboniferous period coal, located in the northern foreland basin of the Dabie orogenic belt in eastern China. High powered crystal lattice images of Bright Fields (BF) and Selected Area Diffraction patterns (SAD) of different types of metamorphism in coal were obtained. The results show that the Basic Structural Units (BSU) become increasingly more compact as a function of rising tem-perature and pressure. Under pressure, the local orientation of molecules is strengthened, the arrangement of BSU speeds up and the degree of order is clearly enhanced.
基金supported by Chinese Ministry of Science and Technology Project(No.2006CB202202)the National Natural Science Foundation of China(No.40972106 and No.40772095)
文摘Multiple sets of thick coal beds characterized by simple structure and shallow burial depth were developed in the Early and Middle Jurassic strata of the Ordos Basin, northwestern China. The huge reserves of this high quality coal have a high commercial value. We studied the coal's petrologic characteristics and its maceral distribution to determine the maceral's contribution to generation of oil and gas. The results show that the Jurassic coals in the Ordos Basin have special petrological features because of the Basin's unique depo- sitional environment which was mainly a series of high-stand swamps in the upper fluvial system. These petro- graphic features are a result of the development of typical inland lakes where some sand bodies were formed by migrating rivers. After burial, the peat continued to undergo oxidizing conditions, this process generated extensive higher inertinite contents in the coals and the vitrinite components were altered to semi-vitrinite. The macroscopic petrographic types of these Jurassic coals are mainly semi-dull coal, dull coal, semilustrous and lustrous coal. The proportions of semi-dull coal and dull coal are higher in the basin margins, especially in the area near the northern margin. The numbers of semilustrous and lustrous coals increase southwards and towards the central basin. This situation indicates that different coal-forming swamp environments have major controlling effects on the coal components. Another observation is that in the Ordos' coal sequences, especially in the lower part, some sandstone beds are thick, up to 20 m with a coarse grain size. The higher fusinite content in the macerals accompanies a higher semi-vitrinite content with more complete and regular plant cell structure. The fusinite structure is clear and well preserved. After burial, the lithology of the roof and floor rocks can continue to affect the evolution of coal petrology. The sand bodies in the roof and floor exhibit good physical conditions so that pore water can maintain a long-term state of oxidation, circulation and connection to the coal. So coal components remain in an oxidation environment for a long time. Conversely, in the basin center, lacustrine facies developed and peat was rapidly covered by mudstone after burial and subsequent coal beds rapidly entered a reducing environment. As a result, abundant gelatification occurred and the vitrinite content increased. E^inite often accumulated in a specific position in the coal bed. Although the average exinite content is not high on the whole, it does significantly contribute to the total hydrocarbon generation. The exinite content has been underestimated, especially the amorphous bituminous fluid and its importance is emphasized here. The reason is that the fluid flows easily into fusinite which has strong rigidity, or flows into some fissures, where it is commonly neglected.
基金sponsored by the Major National Science and Technology Projects(No.2016ZX05044002003)the Fundamental Research Funds for the Central Universities(No.2017CXNL03)the Surface well placement optimization via the topology analysis of well spatial form(41402291)。
文摘In this paper,the heterogeneity of adsorption pores in middle and high rank coal samples were analyzed by using low temperature N2 and CO2 adsorption technology and fractal theory.The following results were achieved.1)According to the results of volume and surface fractal dimension,meso-pores can be classified into Mep-1,Mep-2,and Mep-3,respectively.Micro-pore can be classified into Mip-1,Mip-2,and Mip-3,respectively.2)Pore types play an important role in affecting the heterogeneity of meso-pores.The volume heterogeneity(VHY)of Mep-1 is simpler than that of Mep-2 and Mep-3 in type A samples.However,the VHY of Mep-1 becomes gradually larger than that of Mep-2 and Mep-3 from type A to type B and C.The VHY of open pore in the same diameter is higher than that of semi-open or closed pore.Meanwhile,the surface heterogeneity(SHY)of types A and B samples is significantly larger than that of type C,the SHY of semi-open or closed pores is more complicated than that of open pores.3)Coal rank mainly affects the heterogeneity of micro-pores.The heterogeneity of type A is always smaller than that of type B and C.The VHY of Mip-1 is more complicated than that of Mip-2 and Mip-3 in the same samples,and the sensitivity of the VHY of Mip-1 and Mip-2 to the degree of coal rank is smaller than that of Mip-3.Meanwhile,the SHY of Mip-1 and Mip-2 is simpler than that of Mip-3 in the same sample,the SHY of micro-pores remains stable as the pore size decreases,and the affect of coalification level on SHY decreases with the decrease in pore diameter.Full-scale fractal characterization has enabled quantitative characterization of adsorption pore properties and provided useful information with regards to the similarity of pore features in different coal reservoirs.