期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
Hausdorff Measure of Linear Cantor Set 被引量:3
1
作者 MaChao 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第2期135-138,共4页
We study the Hausdorff measure of linear Cantor setE, on the unit interval, under the strong seperated condition. We give a necessary and sufficient condition for ?(E)=∣E∣° by using the contracting ratio and th... We study the Hausdorff measure of linear Cantor setE, on the unit interval, under the strong seperated condition. We give a necessary and sufficient condition for ?(E)=∣E∣° by using the contracting ratio and the first gap. This condition is easy to use. Key words linear Cantor set - Hausdorff measure - strong seperated condition CLC number O 174. 12 Foundation item: Supported by the National Natural Science Foundation of China (10171028)Biography: Ma Chao (1975-), male, Ph. D. candidate, research direction: fractal geometry. 展开更多
关键词 linear cantor set Hausdorff measure strong seperated condition
下载PDF
THE HAUSDORFF CENTRED MEASURE OF THE SYMMETRY CANTOR SETS 被引量:8
2
作者 Zhu Zhiwei and Zhou Zuoling (Zhongshan Univeristy, China) 《Approximation Theory and Its Applications》 2002年第2期49-57,共9页
Let 0<A≤1/3 ,K(λ) be the attractor of an iterated function system {ψ1,ψ2} on the line, where 1(x)= AT, ψ1(x) = 1-λ+λx, x∈[0,1]. We call K(λ) the symmetry Cantor sets. In this paper, we obtained the exact H... Let 0<A≤1/3 ,K(λ) be the attractor of an iterated function system {ψ1,ψ2} on the line, where 1(x)= AT, ψ1(x) = 1-λ+λx, x∈[0,1]. We call K(λ) the symmetry Cantor sets. In this paper, we obtained the exact Hausdorff Centred measure of K(λ). 展开更多
关键词 THE HAUSDORFF CENTRED measure OF THE SYMMETRY cantor SETS
下载PDF
Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent 被引量:1
3
作者 Mohamed S. El Naschie 《Journal of Quantum Information Science》 2016年第1期1-9,共9页
By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity... By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become ZMG = ER = EPR where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension. 展开更多
关键词 Zero measure Thin cantor Set Fat cantor Set cantorian Fractal KAM Spacetime Quantum Gravity Casimir Pressure E-Infinity Theory
下载PDF
DOUBLING MEASURES ON GENERALIZED CANTOR SETS
4
作者 孙鹏 王小华 《Acta Mathematica Scientia》 SCIE CSCD 2013年第6期1551-1560,共10页
We study the doubling property of binomial measures on generalized ternary Cantor subsets of [0, 1]. We find some new phenomena. There are three different cases. In the first case, we obtain an equivalent condition fo... We study the doubling property of binomial measures on generalized ternary Cantor subsets of [0, 1]. We find some new phenomena. There are three different cases. In the first case, we obtain an equivalent condition for the measure to be doubling. In the other cases, we show that the condition is not necessary. Then facts and partial results are discussed. 展开更多
关键词 cantor set binomial measure doubling measure
下载PDF
HAUSDORFF CENTRED MEASURE OF NON-SYMMETRY CANTOR SETS
5
作者 RuanHuojun DaiMeifeng SuWeiyi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第2期235-242,共8页
Let 0<λ_1,λ_2<1 and 1-λ_1-λ_2≥max{λ_1,λ_2}.Let ~K(λ_1,λ_2) be the attractor of the iterated function system {φ_1,φ_2}on the line,where φ_1(x)=λ_1x and φ_2(x)=1-λ_2+λ_2x,x∈R.~K(λ_1,λ_2) is ... Let 0<λ_1,λ_2<1 and 1-λ_1-λ_2≥max{λ_1,λ_2}.Let ~K(λ_1,λ_2) be the attractor of the iterated function system {φ_1,φ_2}on the line,where φ_1(x)=λ_1x and φ_2(x)=1-λ_2+λ_2x,x∈R.~K(λ_1,λ_2) is called a non-symmetry Cantor set. In this paper,it is proved that the exact Hausdorff centred measure of K(λ_1,λ_2) equals 2s(1-λ)s,where λ=max{λ_1,λ_2} and s is the Hausdorff dimension of K(λ_1,λ_2). 展开更多
关键词 non-symmetry cantor set Hausdorff centred measure iterated function system.
下载PDF
DENSITIES FOR UNBALANCED MEASURES OF A LINEAR CANTOR SET
6
作者 Meifeng Dai 《Analysis in Theory and Applications》 2006年第1期91-100,共10页
Define a linear Cantor set C to be the attractor of a linear iterated function system fj (x) =rjx + bj(j = 1,2,…,N), on the line satisfying the sures with respect to C,we study the centered upper and the centere... Define a linear Cantor set C to be the attractor of a linear iterated function system fj (x) =rjx + bj(j = 1,2,…,N), on the line satisfying the sures with respect to C,we study the centered upper and the centered lower density for Ф(t) = t^s withunnatural choices and with natural choices of s. 展开更多
关键词 linear cantor set DENSITY unbalanced measure
下载PDF
A Riesz Product Type Measure on the Cantor Group
7
作者 SHI QI-YAN 《Communications in Mathematical Research》 CSCD 2010年第1期7-16,共10页
A Riesz type product as Pn=nЛj=1(1+awj+bwj+1)is studied, where a, b are two real numbers with |a| + |b| 〈 1, and {wj} are indepen- dent random variables taking values in (-1, 1} with equal probability. Le... A Riesz type product as Pn=nЛj=1(1+awj+bwj+1)is studied, where a, b are two real numbers with |a| + |b| 〈 1, and {wj} are indepen- dent random variables taking values in (-1, 1} with equal probability. Let dw be the normalized Haar measure on the Cantor group Ω = (-1, 1}^N. The sequence of P,~dw 1 probability measures {Pndw/E(Pn) } is showed to converge weakly to a unique continuous measure on/2, and the obtained measure is singular with respect to dw. 展开更多
关键词 Riesz product cantor group weak topology singularity of measure 2000 MR subject classification- 42A55 28A33
下载PDF
The Proof of the Sufficient and Necessary Conditions which Make the Hausdorff Measure of the Generalized Non-uniform Cantor Set'exist
8
作者 ZENG Chao-yi 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期293-296,共4页
The paper succeeds in the obtaining a class of generalized non-uniform Cantor set based on the iteration (1): Si(x) = αix + bi, x ∈ [0, 1], i = 1,2,…, m, where 0 〈 αi 〈 1, i = 1,2,…,m; bi + αi 〉 0, i =... The paper succeeds in the obtaining a class of generalized non-uniform Cantor set based on the iteration (1): Si(x) = αix + bi, x ∈ [0, 1], i = 1,2,…, m, where 0 〈 αi 〈 1, i = 1,2,…,m; bi + αi 〉 0, i = 1,2,…,m- 1, b1 = 0 and αm + bm = 1. Providing the sufficient and necessary conditions of its existence Hausdorff measure. 展开更多
关键词 self-similar set cantor set Hausdorff dimension Hausdorff measure
下载PDF
一类Cantor整数的渐近性质
9
作者 曹春云 李惠惠 《应用数学》 北大核心 2023年第1期258-264,共7页
对于任意的正整数p≥3,用{a_(n)}_(n≥0)表示p-进展式数字只取偶数的非负整数所构成的数列.我们给出了a_(n)的增长阶为log_(s)p,其中s=[p/2],[·]为取上整函数.证明了{an/nlogsp}_(n≥1)在[2s-2/p-1,2]中稠密.并从测度的角度对该稠... 对于任意的正整数p≥3,用{a_(n)}_(n≥0)表示p-进展式数字只取偶数的非负整数所构成的数列.我们给出了a_(n)的增长阶为log_(s)p,其中s=[p/2],[·]为取上整函数.证明了{an/nlogsp}_(n≥1)在[2s-2/p-1,2]中稠密.并从测度的角度对该稠密性加以阐释. 展开更多
关键词 cantor整数 自相似集 自相似测度
下载PDF
正测度Cantor集与正测度Cantor函数
10
作者 李雨哲 王丽 《数学杂志》 2023年第3期277-282,共6页
本文利用类比的方法,将Cantor集上定义的Cantor函数进行了推广.首先给出了正测度Cantor集及正测度Cantor函数的定义;然后通过严格的证明得到了正测度Cantor函数的一些性质,并给出了正测度Cantor函数的一些应用;最后通过实例说明,由于正... 本文利用类比的方法,将Cantor集上定义的Cantor函数进行了推广.首先给出了正测度Cantor集及正测度Cantor函数的定义;然后通过严格的证明得到了正测度Cantor函数的一些性质,并给出了正测度Cantor函数的一些应用;最后通过实例说明,由于正测度Cantor函数构造的特殊性,可以用来作为一些命题的反例. 展开更多
关键词 cantor 正测度cantor cantor函数 正测度cantor函数
下载PDF
Cantor展式中的乘积型动力丢番图逼近
11
作者 王为亮 岳芹 《合肥学院学报(综合版)》 2023年第2期8-13,共6页
研究Cantor展式中的乘积型动力丢番图逼近,将证明相应集合的Hausdorff测度与某个级数的敛散性有关,并且也给出该集合的Hausdorff维数。
关键词 cantor展式 丢番图逼近 HAUSDORFF测度 HAUSDORFF维数
下载PDF
含参变量Cantor集的Hausdorff测度 被引量:6
12
作者 曾超益 袁德辉 《数学杂志》 CSCD 北大核心 2011年第4期729-737,共9页
本文研究了菱形为基本集所构成的的广义Cantor集的Hausdorff测度问题.利用菱形几何结构的相关证明方法,获得了此类广义Cantor集的Hausdorff测度准确值,推广了曾超益和许绍元等人的已有结果.
关键词 广义cantor HAUSDORFF测度 p级拷贝
下载PDF
三分Cantor集自乘积的Hausdorff测度的估计 被引量:1
13
作者 贾保国 周作领 朱智伟 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第3期109-110,共2页
借助于部分估计原理和质量分布原理 ,证明了三分Cantor集C自乘积集C×C的Hausdorff测度满足1 4832 9≤Hlog43 (C×C)≤ 1 5 0 2 88。
关键词 三分cantor 自乘积 HAUSDORFF测度 自相似集 HAUSDORFF维数 部分估计原理 质量分布原理 分形集 分形几何
下载PDF
一致Cantor集的Minkowski容度 被引量:5
14
作者 蒋锋 陈世荣 《数学物理学报(A辑)》 CSCD 北大核心 2007年第4期641-647,共7页
该文研究了一致cantor集的Minkowski容度,并且计算出了它的上Minkowski容度和下Minkowski容度.由此推出它的Minkowski容度是不存在的.
关键词 MINKOWSKI容度 一致cantor Minkowski维数 Minkowski可测
下载PDF
Cantor集的自乘积集的Hausdorff测度的下界 被引量:2
15
作者 贾保国 周作领 朱智伟 《数学年刊(A辑)》 CSCD 北大核心 2003年第5期575-582,共8页
证明了三分Cantor集C的自乘积集C×C的Hausdorff测度满足 H^(log_3)~4(C×C)≥1.48329。
关键词 自相似集 HAUSDORFF维数与测度 cantor
下载PDF
一类广义Cantor集的Hausdorff测度 被引量:5
16
作者 徐园芬 戴振祥 《宁波大学学报(理工版)》 CAS 2002年第2期7-10,共4页
研究和推广了自相似分形中最经典的例子Cantor三分集的构造及其Hausdorff测度 ,解决了一类广义Cantor集的Hausdorff测度计算问题 .得到的主要结果是构造了一类广义的Cantor 2k + 1(k∈N)分集 ,并证明了它们的Hausdorff测度Hs(E) =1.
关键词 广义cantor HAUSDORFF测度 HAUSDORFF维数 自相似集 分形几何 自相似分形
下载PDF
m分Cantor尘的Hausdorff测度 被引量:5
17
作者 曾超益 袁德辉 《纯粹数学与应用数学》 CSCD 2009年第2期356-362,共7页
为得到一类相似分形的Hausdorff测度准确值.给出了m分Cantor尘的几何结构,利用几何度量关系对m分Cantor尘的Hausdorff测度准确值进行研究.证明了m分Cantor尘的Hausdorff测度准确为Hs(E)=1/((m-1)s)[(m-2k+1)2+(m-1)2]s/2,其中s=logm 4,m... 为得到一类相似分形的Hausdorff测度准确值.给出了m分Cantor尘的几何结构,利用几何度量关系对m分Cantor尘的Hausdorff测度准确值进行研究.证明了m分Cantor尘的Hausdorff测度准确为Hs(E)=1/((m-1)s)[(m-2k+1)2+(m-1)2]s/2,其中s=logm 4,m≥4,1≤k≤m.结果表明它是Cantor尘和Sierpinski地毯的Hausdorff测度的准确值的推广,4分Cantor尘和4分Sierpinski地毯的Hausdorff测度的准确值是其特例. 展开更多
关键词 相似分形 m分cantor HAUSDORFF测度 p级拷贝
下载PDF
Cantor型随机变量序列强极限定理的研究 被引量:7
18
作者 王康康 杨卫国 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2006年第3期26-29,共4页
研究了对任意Cantor型随机变量序列普遍成立的一类强大数定理。证明中利用条件期望的概念,采用测度的网微分法并运用纯分析运算得出结论,由推论得到随机变量序列已有的经典强大数定律以及对任意随机变量序列普遍成立的强大数定律。
关键词 cantor型随机变量序列 网微分法 条件期望 任意随机序列
下载PDF
任意Cantor型随机函数序列随机和的一类局部极限定理 被引量:6
19
作者 王康康 叶慧 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2008年第2期87-90,共4页
研究了对任意Cantor型随机函数序列随机和普遍成立的一类局部极限定理。利用条件期望的概念,采用测度的网微分法并运用纯分析运算得出了结论。作为推论,得到随机变量序列已有的经典强大数定律以及对任意随机变量序列普遍成立的强大数定律。
关键词 cantor型随机函数序列 随机和 网微分法 条件期望 任意随机序列
下载PDF
Cantor型集子集的维数 被引量:1
20
作者 镇方雄 张新明 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期23-25,共3页
首先定义了Cantor型集合,然后定义了Cantor型集合的Besicovitch子集Bp,并主要考虑了在相容和不相容情形下E的子集的Hausdorff维数.
关键词 cantor型集合 Besicovitch集 HAUSDORFF测度 HAUSDORFF维数
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部