High Methoxy Pectin (HMP), Sugar Beet Pectin (SBP), Soy Pectin (SOY), and Fructooligosaccharide (FOS, as a positive control) were used to determine fermentation properties considering applicabil-ity as functional food...High Methoxy Pectin (HMP), Sugar Beet Pectin (SBP), Soy Pectin (SOY), and Fructooligosaccharide (FOS, as a positive control) were used to determine fermentation properties considering applicabil-ity as functional foods, particularly related to colon health. Certain beneficial effects of carbohy-drates in humans can be postulated as being due to microorganisms and metabolites (short-chain fatty acids (SCFAs)). Fecal samples were collected and incubated anaerobically with HMP, SBP, SOY, and FOS at 37 °C. The average degree of polymerization (DP) of HMP, SBP, and SOY was 492, 3729, and 1510, respectively. Degree of pectin methylation of each sample was 76.0% (HMP), 21.2% (SBP), and 22.8% (SOY). Total SCFAs in SOY showed the highest value compared to other samples, especially having the highest concentration of propionic acid (P < 0.05). While fermentation with FOS showed higher butyrate production, the total SCFAs with SOY, HMP, and SBP were significantly higher than FOS over 30 h (P < 0.05). From the denaturing gradient gel electrophoresis (DGGE) analysis, changes of microbiota composition were found. In conclusion, pectin samples, especially soy pectin, stimulated production of total SCFAs and composition of human fecal microbiota was modulated. Therefore, pectin samples may alter the composition of fecal microbiota and improve the colonic health.展开更多
壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)...壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TG)、Zeta电位仪、X射线光电子能谱(XPS)及等技术表征其结构特性,优化吸附解析条件,并评估其对藻蓝蛋白中Pb(Ⅱ)的实际去除效果。结果显示,与CPB和Gel-CPB相比,CMC改性的CPB(CMC-CPB)热稳定性高、表面粗糙多孔、比表面积大(20.28±1.35 m^(2)/g)及Zeta电位低,对金属离子吸附能力强,且解析再生利用率高。FTIR图谱分析显示改性前后CPB官能团结构未发生明显变化,其主要结构官能团为羧基、羟基和氨基。TG分析表明改性前后的CMC-CPB的热稳定性显著高于CPB和Gel-CPB(P<0.05)。XPS光谱分析表明三种吸附剂成功吸附了Pb(Ⅱ),其中CMC-CPB对Pb(Ⅱ)的吸收峰最强。三种吸附剂(CPB、Gel-CPB和CMC-CPB)去除Pb(Ⅱ)的最佳pH和温度分别为6.0和60℃,对Pb(Ⅱ)的吸附过程均符合Langmuir吸附等温模型(R^(2)=0.9543~0.9811)和准二级动力学模型(R^(2)=0.9963~0.9991),该吸附属于单分子层化学吸附,即-COO、-OH、-CO-NH与Pb(Ⅱ)之间的络合作用。根据Langmuir模型曲线评估,CMC-CPB对Pb(Ⅱ)的最大吸附容量q_(max)为69.37 mg/g,显著高于Gel-CPB和CPB(P<0.05)。综合在藻蓝蛋白中的应用效果,CMC-CPB低成本高效安全地去除藻类和藻蓝蛋白食品中Pb(Ⅱ)具有更广阔的前景。展开更多
通过流变学方法对商业橘皮果胶及大豆果胶溶液黏度及凝胶过程进行分析。结果表明:相同条件下,商业橘皮果胶的黏度高于大豆果胶;在形成凝胶过程中,商业橘皮果胶凝胶体系储能模量要远高于大豆果胶。果胶质量浓度为2 g/100 m L、蔗糖添加量...通过流变学方法对商业橘皮果胶及大豆果胶溶液黏度及凝胶过程进行分析。结果表明:相同条件下,商业橘皮果胶的黏度高于大豆果胶;在形成凝胶过程中,商业橘皮果胶凝胶体系储能模量要远高于大豆果胶。果胶质量浓度为2 g/100 m L、蔗糖添加量为55、60 g/100 m L,葡萄糖酸内酯(D-glucono-δ-lactone,GDL)添加量为3、4 g/100 m L的商业橘皮果胶与相同条件下的大豆果胶储能模量差异不大;通过加入蔗糖及GDL或提高大豆果胶质量浓度,可明显提高大豆果胶凝胶体系的储能模量,增加大豆果胶的凝胶强度。展开更多
为了进一步了解卵磷脂在果胶凝胶中的作用,该文考察卵磷脂对果胶凝胶流变性的影响,以低酯苹果果胶为原料,在钙离子浓度为12 mmol/L条件下,加入质量分数0.2%~1.2%的卵磷脂,考察凝胶过程中储能模量(G′)与损耗模量(G″)变化。通过凝...为了进一步了解卵磷脂在果胶凝胶中的作用,该文考察卵磷脂对果胶凝胶流变性的影响,以低酯苹果果胶为原料,在钙离子浓度为12 mmol/L条件下,加入质量分数0.2%~1.2%的卵磷脂,考察凝胶过程中储能模量(G′)与损耗模量(G″)变化。通过凝胶结构形成速度(structure developing rate,SDR)流变学分析方法探讨在果胶凝胶过程中卵磷脂对凝胶体系的影响,结果显示:卵磷脂的添加对果胶钙凝胶的形成速度(SDR)和储能模量(G′)有影响,在整个温度变化范围内,卵磷脂添加量小于0.4%时对SDR曲线和G′曲线的影响不明显;卵磷脂添加量为0.4%时SDR曲线和G′曲线明显上升,显示出较快的凝胶速度和较强的凝胶强度;当卵磷脂添加量大于0.4%时,SDR曲线和G′曲线下降。凝胶形成动力学研究显示,加入0.4%的卵磷脂,使果胶的凝胶过程在高温区和低温区的差别更大,活化能差别也较大(P〈0.05):高温区活化能为290.6 k J/mol,低温区活化能为67.1 k J/mol。电镜扫描显示添加0.4%卵磷脂的果胶钙凝胶结构更为均匀紧密。研究结果为卵磷脂/果胶体系的应用提供理论参考数据。展开更多
文摘High Methoxy Pectin (HMP), Sugar Beet Pectin (SBP), Soy Pectin (SOY), and Fructooligosaccharide (FOS, as a positive control) were used to determine fermentation properties considering applicabil-ity as functional foods, particularly related to colon health. Certain beneficial effects of carbohy-drates in humans can be postulated as being due to microorganisms and metabolites (short-chain fatty acids (SCFAs)). Fecal samples were collected and incubated anaerobically with HMP, SBP, SOY, and FOS at 37 °C. The average degree of polymerization (DP) of HMP, SBP, and SOY was 492, 3729, and 1510, respectively. Degree of pectin methylation of each sample was 76.0% (HMP), 21.2% (SBP), and 22.8% (SOY). Total SCFAs in SOY showed the highest value compared to other samples, especially having the highest concentration of propionic acid (P < 0.05). While fermentation with FOS showed higher butyrate production, the total SCFAs with SOY, HMP, and SBP were significantly higher than FOS over 30 h (P < 0.05). From the denaturing gradient gel electrophoresis (DGGE) analysis, changes of microbiota composition were found. In conclusion, pectin samples, especially soy pectin, stimulated production of total SCFAs and composition of human fecal microbiota was modulated. Therefore, pectin samples may alter the composition of fecal microbiota and improve the colonic health.
文摘壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TG)、Zeta电位仪、X射线光电子能谱(XPS)及等技术表征其结构特性,优化吸附解析条件,并评估其对藻蓝蛋白中Pb(Ⅱ)的实际去除效果。结果显示,与CPB和Gel-CPB相比,CMC改性的CPB(CMC-CPB)热稳定性高、表面粗糙多孔、比表面积大(20.28±1.35 m^(2)/g)及Zeta电位低,对金属离子吸附能力强,且解析再生利用率高。FTIR图谱分析显示改性前后CPB官能团结构未发生明显变化,其主要结构官能团为羧基、羟基和氨基。TG分析表明改性前后的CMC-CPB的热稳定性显著高于CPB和Gel-CPB(P<0.05)。XPS光谱分析表明三种吸附剂成功吸附了Pb(Ⅱ),其中CMC-CPB对Pb(Ⅱ)的吸收峰最强。三种吸附剂(CPB、Gel-CPB和CMC-CPB)去除Pb(Ⅱ)的最佳pH和温度分别为6.0和60℃,对Pb(Ⅱ)的吸附过程均符合Langmuir吸附等温模型(R^(2)=0.9543~0.9811)和准二级动力学模型(R^(2)=0.9963~0.9991),该吸附属于单分子层化学吸附,即-COO、-OH、-CO-NH与Pb(Ⅱ)之间的络合作用。根据Langmuir模型曲线评估,CMC-CPB对Pb(Ⅱ)的最大吸附容量q_(max)为69.37 mg/g,显著高于Gel-CPB和CPB(P<0.05)。综合在藻蓝蛋白中的应用效果,CMC-CPB低成本高效安全地去除藻类和藻蓝蛋白食品中Pb(Ⅱ)具有更广阔的前景。
文摘通过流变学方法对商业橘皮果胶及大豆果胶溶液黏度及凝胶过程进行分析。结果表明:相同条件下,商业橘皮果胶的黏度高于大豆果胶;在形成凝胶过程中,商业橘皮果胶凝胶体系储能模量要远高于大豆果胶。果胶质量浓度为2 g/100 m L、蔗糖添加量为55、60 g/100 m L,葡萄糖酸内酯(D-glucono-δ-lactone,GDL)添加量为3、4 g/100 m L的商业橘皮果胶与相同条件下的大豆果胶储能模量差异不大;通过加入蔗糖及GDL或提高大豆果胶质量浓度,可明显提高大豆果胶凝胶体系的储能模量,增加大豆果胶的凝胶强度。
文摘为了进一步了解卵磷脂在果胶凝胶中的作用,该文考察卵磷脂对果胶凝胶流变性的影响,以低酯苹果果胶为原料,在钙离子浓度为12 mmol/L条件下,加入质量分数0.2%~1.2%的卵磷脂,考察凝胶过程中储能模量(G′)与损耗模量(G″)变化。通过凝胶结构形成速度(structure developing rate,SDR)流变学分析方法探讨在果胶凝胶过程中卵磷脂对凝胶体系的影响,结果显示:卵磷脂的添加对果胶钙凝胶的形成速度(SDR)和储能模量(G′)有影响,在整个温度变化范围内,卵磷脂添加量小于0.4%时对SDR曲线和G′曲线的影响不明显;卵磷脂添加量为0.4%时SDR曲线和G′曲线明显上升,显示出较快的凝胶速度和较强的凝胶强度;当卵磷脂添加量大于0.4%时,SDR曲线和G′曲线下降。凝胶形成动力学研究显示,加入0.4%的卵磷脂,使果胶的凝胶过程在高温区和低温区的差别更大,活化能差别也较大(P〈0.05):高温区活化能为290.6 k J/mol,低温区活化能为67.1 k J/mol。电镜扫描显示添加0.4%卵磷脂的果胶钙凝胶结构更为均匀紧密。研究结果为卵磷脂/果胶体系的应用提供理论参考数据。