This paper reviews the development of valve- less piezoelectric pump with cone-shaped tube chrono- logically, which have widely potential application in biomedicine and micro-electro-mechanical systems because of its ...This paper reviews the development of valve- less piezoelectric pump with cone-shaped tube chrono- logically, which have widely potential application in biomedicine and micro-electro-mechanical systems because of its novel principles and deduces the research direction in the future. Firstly, the history of valveless piezoelectric pumps with cone-shaped tubes is reviewed and these pumps are classified into the following types: single pump with solid structure or plane structure, and combined pump with parallel structure or series structure. Furthermore, the function of each type of cone-shaped tubes and pump structures are analyzed, and new direc- tions of potential expansion of valveless piezoelectric pumps with cone-shaped tubes are summarized and deduced. The historical argument, which is provided by the literatures, that for a valveless piezoelectric pump with cone-shaped tubes, cone angle determines the flow resistance and the flow resistance determines the flow direction. The argument is discussed in the reviewed pumps one by one, and proved to be convincing. Finally, it is deduced that bionics is pivotal in the development of valveless piezoelectric pump with cone-shaped tubes fromthe perspective of evolution of biological structure. This paper summarizes the current valveless piezoelectric pumps with cone-shaped tubes and points out the future development, which may provide guidance for the research of piezoelectric actuators.展开更多
Effect of viscosity on flow patterns of pumping-up of liquid generated by a cone rotating at the liquid surface has been experimentally studied with various concentrations of glycerol aqueous solution. We have previou...Effect of viscosity on flow patterns of pumping-up of liquid generated by a cone rotating at the liquid surface has been experimentally studied with various concentrations of glycerol aqueous solution. We have previously found that the higher viscous non-Newtonian fluid was lifted-up along the conical surface with a radial filament-wise pattern, which is quite different from the monotonic thin film-wise pattern observed for the lower viscous fluid such as water. In order to elucidate the pumping-up mechanism, a transition diagram indicating the critical rotation rate is obtained as a function of viscosity?of Newtonian fluid in this study, varying from the lower value of water (μ?=?0.890 mPa·s) to the higher one of glycerin (μ?= 910?mPa·s). It is found that there are three categories depending on the viscosity classified as?1) film-wise pumping-up region for the viscosity?μ?≤?134?mPa·s,?2) filament-wise pumping-up one for the viscosity?μ?≥?520?mPa·s, and?3) no pumping-up phenomenon occurs?for 134??μ??mPa·s.展开更多
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance an...The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375227,51605200)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20150518)
文摘This paper reviews the development of valve- less piezoelectric pump with cone-shaped tube chrono- logically, which have widely potential application in biomedicine and micro-electro-mechanical systems because of its novel principles and deduces the research direction in the future. Firstly, the history of valveless piezoelectric pumps with cone-shaped tubes is reviewed and these pumps are classified into the following types: single pump with solid structure or plane structure, and combined pump with parallel structure or series structure. Furthermore, the function of each type of cone-shaped tubes and pump structures are analyzed, and new direc- tions of potential expansion of valveless piezoelectric pumps with cone-shaped tubes are summarized and deduced. The historical argument, which is provided by the literatures, that for a valveless piezoelectric pump with cone-shaped tubes, cone angle determines the flow resistance and the flow resistance determines the flow direction. The argument is discussed in the reviewed pumps one by one, and proved to be convincing. Finally, it is deduced that bionics is pivotal in the development of valveless piezoelectric pump with cone-shaped tubes fromthe perspective of evolution of biological structure. This paper summarizes the current valveless piezoelectric pumps with cone-shaped tubes and points out the future development, which may provide guidance for the research of piezoelectric actuators.
文摘Effect of viscosity on flow patterns of pumping-up of liquid generated by a cone rotating at the liquid surface has been experimentally studied with various concentrations of glycerol aqueous solution. We have previously found that the higher viscous non-Newtonian fluid was lifted-up along the conical surface with a radial filament-wise pattern, which is quite different from the monotonic thin film-wise pattern observed for the lower viscous fluid such as water. In order to elucidate the pumping-up mechanism, a transition diagram indicating the critical rotation rate is obtained as a function of viscosity?of Newtonian fluid in this study, varying from the lower value of water (μ?=?0.890 mPa·s) to the higher one of glycerin (μ?= 910?mPa·s). It is found that there are three categories depending on the viscosity classified as?1) film-wise pumping-up region for the viscosity?μ?≤?134?mPa·s,?2) filament-wise pumping-up one for the viscosity?μ?≥?520?mPa·s, and?3) no pumping-up phenomenon occurs?for 134??μ??mPa·s.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375227,91223201)
文摘The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.