Deciphering hydrocarbon generation and accumulation stage is of significance to understand oil and gas evolution and seek exploration targets.Taking the Upper Paleozoic buried-hills in the Huanghua Depression,Bohai Ba...Deciphering hydrocarbon generation and accumulation stage is of significance to understand oil and gas evolution and seek exploration targets.Taking the Upper Paleozoic buried-hills in the Huanghua Depression,Bohai Bay Basin,as a case study,hydrocarbon generation environment and detailed accumulation process are revealed by fluid inclusions observations,Laser Raman spectroscopy,Fourier Infrared spectroscopy,and K-Ar isotope measurements.The results show that both oil and gas inclusion were captured in the quartz overgrowth,dissolved feldspar and calcite microfractures,showing blue to dark brown fluoresce.The grains containing oil inclusions index(GOI)of oil,oil&gas and gas being 25%,65%,and 10%and the inclusions with abundant methyl groups and short chains,both indicate high thermal maturity.One series of fluids inclusion is generally observed,evidenced by the concentrated homogenization temperature of 135-145℃ and salinity of 3%-15 w.t.%NaCl equiv,indicating one primary charging stage.The gas and gas&liquid inclusions mainly contain CH_(4),with also peaks indicating CO_(2) and N_(2.)The Carboniferous and Permian biomarkers show reducing environment with brackish water,with organic matter sources both from marine and continental.The relative content ofααα20RC_(27),ααα20RC_(28),andααα20RC_(29) exhibit source contributions both from algae and higher plants,and mainly of II2 to III kerogen.Both coal derived gas and oil associated hydrocarbons are identified from most of the buried-hills.Combining the fluid homogenization temperature and salinity,as well as the thermal evolution history,the hydrocarbon generated from the Upper Paleozoic was concentrated at the end of the Eocene(40 Ma±),while the beginning of charging is 60 Ma±.The Wumaying Buried-hill is of only coal derived gas and has potential for inner coal measure natural gas exploration.The results provide a detailed understanding of hydrocarbon accumulations in the study area,which can also be reference for improving petroleum exploration efficiency in similar basins.展开更多
BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure....BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure. It usually adopts gas injection development to avoid crude oil degassing and fast decreasing production capacity. However, the phase characteristics and miscibility mechanism of this high-temperature and high-pressure fluid after gas injection are not clear. Therefore, it is necessary to study the feasibility of CO<sub>2</sub> injection to improve oil recovery in near critical volatile oil reservoirs through CO<sub>2</sub> injection experiments. In the early stage of the depletion experiment, the content of heavy components in the remaining oil increased significantly, so the depletion method is not conducive to the development of such reservoirs. With the increase of CO<sub>2</sub> injection, the volumetric expansion coefficient of formation crude oil increases significantly, while the saturation pressure and formation crude oil viscosity remain basically unchanged. The minimum miscible pressure experiment shows that CO<sub>2</sub> injection under formation pressure conditions can achieve multiphase miscibility. Based on experimental research results, the BZ13-2 oilfield is suitable for early gas injection development and can significantly improve recovery.展开更多
The Bohai Bay Basin is a Meso-Cenozoic rifted basin where the Paleozoic buried hills with great hydrocarbon potentials are well developed. The reservoir space types are complex and diverse due to tectonic activities, ...The Bohai Bay Basin is a Meso-Cenozoic rifted basin where the Paleozoic buried hills with great hydrocarbon potentials are well developed. The reservoir space types are complex and diverse due to tectonic activities, making fracture distribution highly heterogeneous. Reservoir identification and mapping is challenging due to their large burial depth and poor resolution of seismic data. An integration of well-logging, seismic data interpretation and core observation is applied to identify three structural unit types in the study area, that is, fault breccia zone, fault cataclastic zone, and fault massive rock zone. A comprehensive well-logging identification template and a comprehensive discriminant function M for the reservoir are established based on the well-logging response characteristics. A M value greater than 0.12 indicates a fault breccia zone, that between 0.04 and 0.12 marks a fault cataclastic zone, and that in the range from 0.02 to 0.04 represents a fault massive rock zone. A seismic prediction method with multi-parameter fusion is proposed in the study. The large-scale fractures are mapped by coherence-clutter parameters, while small fractures are predicted via waveform indication inversion. The spatial distribution of “fault-fracture reservoirs” is precisely mapped by frequency fusion technology. It is found that the fault breccia zones usually occur close to the fault planes, while the fault cataclastic zones are slightly away from the fault planes. The hydrocarbon abundance of the breccia zones is greater than that of the fault cataclastic and fault massive rock zones.展开更多
Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination ...Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.展开更多
Based on the data associated with cores,sidewall cores,casting thin sections,reservoir physical properties,conventional logging and imaging logging,the classification schemes of vertical reservoir units are proposed f...Based on the data associated with cores,sidewall cores,casting thin sections,reservoir physical properties,conventional logging and imaging logging,the classification schemes of vertical reservoir units are proposed for the two types of Archaeozoic buried hills(exposed and covered ones)in the Bozhong Sag,Bohai Bay Basin.The geological characteristics and storage spaces of these reservoir units are described,and their identification markers in conventional and imaging log curves are established.The Archaeozoic metamorphic buried hills can be vertically classified into two primary reservoir units:weathering crust and inner buried hill.The weathering crust contains four secondary units,i.e.,the clay zone,weathered glutenite zone,leached zone,disaggregation zone;and the interiors contain two secondary units,i.e.,interior fracture zone and tight zone.In particular,the inner fracture zone was further divided into cataclasite belts and dense-fracture belts.It is proposed that the favorable reservoirs of exposed Archaeozoic metamorphic buried hills are mainly developed in four parts including weathered glutenite zone,leached zone,disintegration zone superposed with the cataclasite belt and the cataclasite belt of inner fracture zone,and are controlled by both weathering and tectonic actions.Favorable reservoirs in covered Archaeozoic metamorphic buried hills are mainly developed in the weathering crust superposed with the cataclasite belts and the cataclasite belts of inner fracture zone,and are mainly controlled by tectonic actions.展开更多
In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional ...In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.展开更多
Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derive...Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derived from the Upper Paleozoic coal source rock, the petroleum reservoir is an inner buried-hill primary oil and gas accumulation, showing a good prospect of the Paleozoic inner buried-hill primary reservoir exploration. The formation and accumulation of the primary petroleum reservoir in the Wumaying inner buried-hill are discussed by studying the primary source conditions, the inner buried-hill reservoir-cap combinations and the hydrocarbon accumulation period. The primary petroleum reservoir has three preponderant characteristics of accumulation: secondary large-scale gas generation of coal source rock, multi reservoir-cap combinations and mainly late hydrocarbon charging, which formed the compound hydrocarbon accumulation of the above-source sandstone and under-source carbonate rock in the Paleozoic inner buried-hill. Along with the Mesozoic and Cenozoic tectonic activities, the formation of the primary reservoir in Wumaying inner buried-hill is characterized by "mixed oil and gas charge in local parts in early stage, adjustment accumulation due to structural high migration in middle stage, and large-scale natural gas charge and compound accumulation in late stage".展开更多
Aiming at the complex flowing environment including the buried hill of Metamorphite, the active bottom water and the fracture at Budate Reservoir within Beir Depression of the Hailar Basin, combining the laboratory st...Aiming at the complex flowing environment including the buried hill of Metamorphite, the active bottom water and the fracture at Budate Reservoir within Beir Depression of the Hailar Basin, combining the laboratory studies and based on analysis of its drive mechanism, field wells’ parameters were used to analyze the effects of different conditions of the fractured metamorphic reservoir with bottom water on its law of wa-ter-cut variation and the waterflooding efficiency. The results show that for the Budate buried hill reservoir with bottom water, the gravity should be taken into consideration to determine reasonable perforation ratio and production pressure difference. And because of the acid sensitivity of the buried hill reservoir, application of proper clay stabilizer will enhance the field oil recovery to a satisfactory extent.展开更多
The pattern of the subtle traps, in which oil and gas accumulated, in the buried-hill faulted zone in the Jiyang sag is very complicated, and very hard to prospect. The paper analyses the main difficulties in explorin...The pattern of the subtle traps, in which oil and gas accumulated, in the buried-hill faulted zone in the Jiyang sag is very complicated, and very hard to prospect. The paper analyses the main difficulties in exploring the complicated buried-hill faulted zone of the area from a point of geology.The typical pattern of the buried-hill zone in the Jiyang sag is studied using the forward modeling.Target-orient layout design and full 3-D seismic technology, which are useful for oil and gas exploration on the zone, are put forward. Taking the exploration for oil and gas traps on the zone as an example, certain technologies and the effect of their applications about the design for target acquisition,acquisition on a wide-azimuth, point sources and point receivers are discussed.展开更多
High oil production from the Proterozoic formation of Shen 229 block in Damingtun Depression, Liaohe Basin, China, indicates the presence of natural fractured reservoir whose production potential is dominated by the s...High oil production from the Proterozoic formation of Shen 229 block in Damingtun Depression, Liaohe Basin, China, indicates the presence of natural fractured reservoir whose production potential is dominated by the structural fracture. A con- sistent structural model and good knowledge of the fracture systems are therefore of key importance in reducing risk in the de- velopment strategies. So data from cores and image logs have been collected to account for the basic characteristics of fracture, and then the analyzed results were integrated with the structural model in order to restrict the fracture network development during the structural evolvement. The structural evolution of the Proterozoic reservoir with time forms the basis for understanding the de- velopment of the 3D fracture system. Seismic interpretation and formation correlation were used to build a 3D geological model. The fault blocks that compose the Proterozoic formation reservoir were subsequently restored to their pre-deformation. From here, the structures were kinematically modeled to simulate the structural evolution of the reservoirs. At each time step, the dilatational and cumulative strain was calculated throughout the modelling history. The total strain which records the total spatial variation in the reservoir due to its structural history, together with core data, well data and the lithology distribution, was used to simulate geologically realistic discrete fracture networks. The benefit of this technique over traditional curvature analysis is that the structural evolution is taken into account, a factor that mostly dominates fracture formation.展开更多
Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractu...Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractures with stress sensitivity and strong heterogeneity, the ECLIPSE software was used in the research, and a three-dimensional injection-production numerical model for horizontal wells in buried hill reservoirs is established. According to the main research factors in water flooding, a series of water flooding schemes are designed, and the optimization of water flooding timing, oil recovery rate and water flooding mode in buried hill reservoirs were carried out. The results show that the optimum pressure level of fractured reservoir is about 70% of the original reservoir pressure. The optimal water flooding method is the conventional water flooding in the initial stage, when the water cut reaches 80%, it is converted into periodic water flooding. The oil recovery is the highest when the water injection period is 4 months. Field tests show that conventional water flooding is carried out in the initial stage of the oilfield A when the pressure is reduced to 70% of the original. Periodic water flooding is carried out when water cut is 80%. Good development results had been achieved in the 10 years since oilfield A was put into production. The average productivity of single well reached 300 m3/d in the initial stage, at present, the water cut is 60%, and the recovery degree is 18.5%, which is better than that of similar oilfields. This technology improves the water flooding effect of blocky bottom water fractured dual media reservoirs in metamorphic buried hills, and provides a reference for the development of similar reservoirs.展开更多
Based on boreholes and dynamic development data, the control over karstification of buried carbonate hill reservoir in Renqiu oil field was studied. The result shows that 1) Karstific caves, fissures, and pores in dol...Based on boreholes and dynamic development data, the control over karstification of buried carbonate hill reservoir in Renqiu oil field was studied. The result shows that 1) Karstific caves, fissures, and pores in dolomite of Wumishan Formation are the most important reservoir voids, 2) the barrier of argillaceous dolomite can result in the existence of residual oil areas under oil-water interface, and 3) the mosores located on the surface of buried hill are also potential areas of residual oil.展开更多
The author proves the existence and movement of a deep-seated fraetural Zone located in the eenter zone of the diwa-type faulted basin in central Hebei Province. This deep-seated fraeturai zone tending in NNE directio...The author proves the existence and movement of a deep-seated fraetural Zone located in the eenter zone of the diwa-type faulted basin in central Hebei Province. This deep-seated fraeturai zone tending in NNE direction is a structural effect of the mtodle East Asin Grustobody in the Mexozoic-Cenozoic. This paper will diseuss the formation, evolution and the meehanism of the deep-seated fraetural zone, faulted basin and the buried hills as well as their relationships. The uthor expounds that the deep geological process is the major factor of the structural effect.展开更多
The study area Caofeidian 18-1/2 structure is located in the Shadongnan structural belt at the southeast subduction end of the Shaleitian salient in the western Bohai Sea. The characteristics of reservoirs and fluid i...The study area Caofeidian 18-1/2 structure is located in the Shadongnan structural belt at the southeast subduction end of the Shaleitian salient in the western Bohai Sea. The characteristics of reservoirs and fluid inclusions from 13 core samples near the buried hills in the study area are studied,and regional geology and conditions for reservoir formation are analyzed to reveal the characteristics and the processes of reservoir formation. Phase I oil and gas inclusions are mainly developed,and the abundance of oil and gas inclusions in this period is high( GOI is about 15%). The homogenization temperature of the hydrocarbon-containing brine inclusions accompanying them is mainly 90-120 ℃ . The simulation results of burial history and thermal history show that the main charging period of oil and gas is the present Himalayan tectonic movement period since 8 Ma,and mainly through unconformities,faults,and drainage systems,they are migrated and accumulated into fault anticline traps of Dongying Formation mudstone( E_d).展开更多
Bozhong oilfield which is abbreviated as BZ oilfield is the first oilfield with deep metamorphic buried hill that is discovered reserves of billion-ton in Bohai Bay. Affected by multi-stage tectonic movements, the dis...Bozhong oilfield which is abbreviated as BZ oilfield is the first oilfield with deep metamorphic buried hill that is discovered reserves of billion-ton in Bohai Bay. Affected by multi-stage tectonic movements, the distribution of fractures is very complex in this area, therefore it is significant to study the evolution of structures for understanding the distribution of fractures. In view of the complexity on the tectonic evolution of the buried hill region in the study area, the influence of tectonic movements on the formation of fractured reservoir is analyzed, and the research results lay the foundation for the efficient development in this type of the oilfield. The results show that main faults, which is formed during early Indosinian and Yanshanian period, are mainly developed in the BZ oilfield area, and the fracture strike has mainly east-west and north-east-east trend. Based on the analysis of the relationship among tectonic evolution, regional stress field and fracture development, it is considered that Indosinian extrusion is the main reason for the formation of main direction faults in the study area. Yanshanian strike-slip transformation and Himalayan reactivation further controlled the development of the fractured reservoirs in the later stage, and formed the present fracture network system. Well block 5 is located in passive plate system during Indosinian period, it is affected by Himalayan stretching and long-term activation of large faults in the later stage, so that the effective fractures are relatively developed. The result plays an important role in guiding the overall plan deployment of the BZ oilfield.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant No.42072194,U1910205)the Fundamental Research Funds for the Central Universities(800015Z1190,2021YJSDC02).
文摘Deciphering hydrocarbon generation and accumulation stage is of significance to understand oil and gas evolution and seek exploration targets.Taking the Upper Paleozoic buried-hills in the Huanghua Depression,Bohai Bay Basin,as a case study,hydrocarbon generation environment and detailed accumulation process are revealed by fluid inclusions observations,Laser Raman spectroscopy,Fourier Infrared spectroscopy,and K-Ar isotope measurements.The results show that both oil and gas inclusion were captured in the quartz overgrowth,dissolved feldspar and calcite microfractures,showing blue to dark brown fluoresce.The grains containing oil inclusions index(GOI)of oil,oil&gas and gas being 25%,65%,and 10%and the inclusions with abundant methyl groups and short chains,both indicate high thermal maturity.One series of fluids inclusion is generally observed,evidenced by the concentrated homogenization temperature of 135-145℃ and salinity of 3%-15 w.t.%NaCl equiv,indicating one primary charging stage.The gas and gas&liquid inclusions mainly contain CH_(4),with also peaks indicating CO_(2) and N_(2.)The Carboniferous and Permian biomarkers show reducing environment with brackish water,with organic matter sources both from marine and continental.The relative content ofααα20RC_(27),ααα20RC_(28),andααα20RC_(29) exhibit source contributions both from algae and higher plants,and mainly of II2 to III kerogen.Both coal derived gas and oil associated hydrocarbons are identified from most of the buried-hills.Combining the fluid homogenization temperature and salinity,as well as the thermal evolution history,the hydrocarbon generated from the Upper Paleozoic was concentrated at the end of the Eocene(40 Ma±),while the beginning of charging is 60 Ma±.The Wumaying Buried-hill is of only coal derived gas and has potential for inner coal measure natural gas exploration.The results provide a detailed understanding of hydrocarbon accumulations in the study area,which can also be reference for improving petroleum exploration efficiency in similar basins.
文摘BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure. It usually adopts gas injection development to avoid crude oil degassing and fast decreasing production capacity. However, the phase characteristics and miscibility mechanism of this high-temperature and high-pressure fluid after gas injection are not clear. Therefore, it is necessary to study the feasibility of CO<sub>2</sub> injection to improve oil recovery in near critical volatile oil reservoirs through CO<sub>2</sub> injection experiments. In the early stage of the depletion experiment, the content of heavy components in the remaining oil increased significantly, so the depletion method is not conducive to the development of such reservoirs. With the increase of CO<sub>2</sub> injection, the volumetric expansion coefficient of formation crude oil increases significantly, while the saturation pressure and formation crude oil viscosity remain basically unchanged. The minimum miscible pressure experiment shows that CO<sub>2</sub> injection under formation pressure conditions can achieve multiphase miscibility. Based on experimental research results, the BZ13-2 oilfield is suitable for early gas injection development and can significantly improve recovery.
文摘The Bohai Bay Basin is a Meso-Cenozoic rifted basin where the Paleozoic buried hills with great hydrocarbon potentials are well developed. The reservoir space types are complex and diverse due to tectonic activities, making fracture distribution highly heterogeneous. Reservoir identification and mapping is challenging due to their large burial depth and poor resolution of seismic data. An integration of well-logging, seismic data interpretation and core observation is applied to identify three structural unit types in the study area, that is, fault breccia zone, fault cataclastic zone, and fault massive rock zone. A comprehensive well-logging identification template and a comprehensive discriminant function M for the reservoir are established based on the well-logging response characteristics. A M value greater than 0.12 indicates a fault breccia zone, that between 0.04 and 0.12 marks a fault cataclastic zone, and that in the range from 0.02 to 0.04 represents a fault massive rock zone. A seismic prediction method with multi-parameter fusion is proposed in the study. The large-scale fractures are mapped by coherence-clutter parameters, while small fractures are predicted via waveform indication inversion. The spatial distribution of “fault-fracture reservoirs” is precisely mapped by frequency fusion technology. It is found that the fault breccia zones usually occur close to the fault planes, while the fault cataclastic zones are slightly away from the fault planes. The hydrocarbon abundance of the breccia zones is greater than that of the fault cataclastic and fault massive rock zones.
文摘Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.
基金Supported by the National Natural Science Foundation of China(41790453,41972313).
文摘Based on the data associated with cores,sidewall cores,casting thin sections,reservoir physical properties,conventional logging and imaging logging,the classification schemes of vertical reservoir units are proposed for the two types of Archaeozoic buried hills(exposed and covered ones)in the Bozhong Sag,Bohai Bay Basin.The geological characteristics and storage spaces of these reservoir units are described,and their identification markers in conventional and imaging log curves are established.The Archaeozoic metamorphic buried hills can be vertically classified into two primary reservoir units:weathering crust and inner buried hill.The weathering crust contains four secondary units,i.e.,the clay zone,weathered glutenite zone,leached zone,disaggregation zone;and the interiors contain two secondary units,i.e.,interior fracture zone and tight zone.In particular,the inner fracture zone was further divided into cataclasite belts and dense-fracture belts.It is proposed that the favorable reservoirs of exposed Archaeozoic metamorphic buried hills are mainly developed in four parts including weathered glutenite zone,leached zone,disintegration zone superposed with the cataclasite belt and the cataclasite belt of inner fracture zone,and are controlled by both weathering and tectonic actions.Favorable reservoirs in covered Archaeozoic metamorphic buried hills are mainly developed in the weathering crust superposed with the cataclasite belts and the cataclasite belts of inner fracture zone,and are mainly controlled by tectonic actions.
文摘In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.
基金Supported by the PetroChina Science and Technology Major Project(2018E-11-02)
文摘Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derived from the Upper Paleozoic coal source rock, the petroleum reservoir is an inner buried-hill primary oil and gas accumulation, showing a good prospect of the Paleozoic inner buried-hill primary reservoir exploration. The formation and accumulation of the primary petroleum reservoir in the Wumaying inner buried-hill are discussed by studying the primary source conditions, the inner buried-hill reservoir-cap combinations and the hydrocarbon accumulation period. The primary petroleum reservoir has three preponderant characteristics of accumulation: secondary large-scale gas generation of coal source rock, multi reservoir-cap combinations and mainly late hydrocarbon charging, which formed the compound hydrocarbon accumulation of the above-source sandstone and under-source carbonate rock in the Paleozoic inner buried-hill. Along with the Mesozoic and Cenozoic tectonic activities, the formation of the primary reservoir in Wumaying inner buried-hill is characterized by "mixed oil and gas charge in local parts in early stage, adjustment accumulation due to structural high migration in middle stage, and large-scale natural gas charge and compound accumulation in late stage".
文摘Aiming at the complex flowing environment including the buried hill of Metamorphite, the active bottom water and the fracture at Budate Reservoir within Beir Depression of the Hailar Basin, combining the laboratory studies and based on analysis of its drive mechanism, field wells’ parameters were used to analyze the effects of different conditions of the fractured metamorphic reservoir with bottom water on its law of wa-ter-cut variation and the waterflooding efficiency. The results show that for the Budate buried hill reservoir with bottom water, the gravity should be taken into consideration to determine reasonable perforation ratio and production pressure difference. And because of the acid sensitivity of the buried hill reservoir, application of proper clay stabilizer will enhance the field oil recovery to a satisfactory extent.
文摘The pattern of the subtle traps, in which oil and gas accumulated, in the buried-hill faulted zone in the Jiyang sag is very complicated, and very hard to prospect. The paper analyses the main difficulties in exploring the complicated buried-hill faulted zone of the area from a point of geology.The typical pattern of the buried-hill zone in the Jiyang sag is studied using the forward modeling.Target-orient layout design and full 3-D seismic technology, which are useful for oil and gas exploration on the zone, are put forward. Taking the exploration for oil and gas traps on the zone as an example, certain technologies and the effect of their applications about the design for target acquisition,acquisition on a wide-azimuth, point sources and point receivers are discussed.
文摘High oil production from the Proterozoic formation of Shen 229 block in Damingtun Depression, Liaohe Basin, China, indicates the presence of natural fractured reservoir whose production potential is dominated by the structural fracture. A con- sistent structural model and good knowledge of the fracture systems are therefore of key importance in reducing risk in the de- velopment strategies. So data from cores and image logs have been collected to account for the basic characteristics of fracture, and then the analyzed results were integrated with the structural model in order to restrict the fracture network development during the structural evolvement. The structural evolution of the Proterozoic reservoir with time forms the basis for understanding the de- velopment of the 3D fracture system. Seismic interpretation and formation correlation were used to build a 3D geological model. The fault blocks that compose the Proterozoic formation reservoir were subsequently restored to their pre-deformation. From here, the structures were kinematically modeled to simulate the structural evolution of the reservoirs. At each time step, the dilatational and cumulative strain was calculated throughout the modelling history. The total strain which records the total spatial variation in the reservoir due to its structural history, together with core data, well data and the lithology distribution, was used to simulate geologically realistic discrete fracture networks. The benefit of this technique over traditional curvature analysis is that the structural evolution is taken into account, a factor that mostly dominates fracture formation.
文摘Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractures with stress sensitivity and strong heterogeneity, the ECLIPSE software was used in the research, and a three-dimensional injection-production numerical model for horizontal wells in buried hill reservoirs is established. According to the main research factors in water flooding, a series of water flooding schemes are designed, and the optimization of water flooding timing, oil recovery rate and water flooding mode in buried hill reservoirs were carried out. The results show that the optimum pressure level of fractured reservoir is about 70% of the original reservoir pressure. The optimal water flooding method is the conventional water flooding in the initial stage, when the water cut reaches 80%, it is converted into periodic water flooding. The oil recovery is the highest when the water injection period is 4 months. Field tests show that conventional water flooding is carried out in the initial stage of the oilfield A when the pressure is reduced to 70% of the original. Periodic water flooding is carried out when water cut is 80%. Good development results had been achieved in the 10 years since oilfield A was put into production. The average productivity of single well reached 300 m3/d in the initial stage, at present, the water cut is 60%, and the recovery degree is 18.5%, which is better than that of similar oilfields. This technology improves the water flooding effect of blocky bottom water fractured dual media reservoirs in metamorphic buried hills, and provides a reference for the development of similar reservoirs.
基金National Natural Science Foundatin of China( 4 9672 15 9)
文摘Based on boreholes and dynamic development data, the control over karstification of buried carbonate hill reservoir in Renqiu oil field was studied. The result shows that 1) Karstific caves, fissures, and pores in dolomite of Wumishan Formation are the most important reservoir voids, 2) the barrier of argillaceous dolomite can result in the existence of residual oil areas under oil-water interface, and 3) the mosores located on the surface of buried hill are also potential areas of residual oil.
文摘The author proves the existence and movement of a deep-seated fraetural Zone located in the eenter zone of the diwa-type faulted basin in central Hebei Province. This deep-seated fraeturai zone tending in NNE direction is a structural effect of the mtodle East Asin Grustobody in the Mexozoic-Cenozoic. This paper will diseuss the formation, evolution and the meehanism of the deep-seated fraetural zone, faulted basin and the buried hills as well as their relationships. The uthor expounds that the deep geological process is the major factor of the structural effect.
基金Supported by Tianjin Branch of CNOOC(China)Co.,Ltd.(CCL2014TJX ZSS0870)。
文摘The study area Caofeidian 18-1/2 structure is located in the Shadongnan structural belt at the southeast subduction end of the Shaleitian salient in the western Bohai Sea. The characteristics of reservoirs and fluid inclusions from 13 core samples near the buried hills in the study area are studied,and regional geology and conditions for reservoir formation are analyzed to reveal the characteristics and the processes of reservoir formation. Phase I oil and gas inclusions are mainly developed,and the abundance of oil and gas inclusions in this period is high( GOI is about 15%). The homogenization temperature of the hydrocarbon-containing brine inclusions accompanying them is mainly 90-120 ℃ . The simulation results of burial history and thermal history show that the main charging period of oil and gas is the present Himalayan tectonic movement period since 8 Ma,and mainly through unconformities,faults,and drainage systems,they are migrated and accumulated into fault anticline traps of Dongying Formation mudstone( E_d).
文摘Bozhong oilfield which is abbreviated as BZ oilfield is the first oilfield with deep metamorphic buried hill that is discovered reserves of billion-ton in Bohai Bay. Affected by multi-stage tectonic movements, the distribution of fractures is very complex in this area, therefore it is significant to study the evolution of structures for understanding the distribution of fractures. In view of the complexity on the tectonic evolution of the buried hill region in the study area, the influence of tectonic movements on the formation of fractured reservoir is analyzed, and the research results lay the foundation for the efficient development in this type of the oilfield. The results show that main faults, which is formed during early Indosinian and Yanshanian period, are mainly developed in the BZ oilfield area, and the fracture strike has mainly east-west and north-east-east trend. Based on the analysis of the relationship among tectonic evolution, regional stress field and fracture development, it is considered that Indosinian extrusion is the main reason for the formation of main direction faults in the study area. Yanshanian strike-slip transformation and Himalayan reactivation further controlled the development of the fractured reservoirs in the later stage, and formed the present fracture network system. Well block 5 is located in passive plate system during Indosinian period, it is affected by Himalayan stretching and long-term activation of large faults in the later stage, so that the effective fractures are relatively developed. The result plays an important role in guiding the overall plan deployment of the BZ oilfield.