Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treati...Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treating migraines through the use of network pharmacology and a rat migraine model.Methods:After identifying the active components of Horcha-6,the corresponding genes of the active components’target were obtained from the Universal Protein database,and a“compound-target-disease”network was constructed using Cytoscape 3.9.0 software.For the in vivo experiments,nitroglycerin was injected intraperitoneally into rats to create a migraine model.Pre-treatment with Horcha-6 was administered orally for 14 days,and rats were subjected to migraine-related behavior tests.RNA sequencing was performed to identify the gene expression regulated by Horcha-6 in the trigeminal nerve.Results:A total of 903 chemical components of Horcha-6 have been collected in the liquid chromatography with tandem mass spectrometry.We discovered 55 of the Horcha-6 bio-active components that were evaluated based on their Percent Human Oral Absorption(≥30%)and DL values(≥0.185)on the traditional Chinese medicine systems pharmacology database.The“compound-target-disease”network contained 163 intersection targets with the migraine state.Gene Ontology analysis indicated that these components significantly regulated the immune response,vascular function,oxidative stress,etc.When Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed,we observed that most of the target genes were significantly enriched in the inflammation and neuro-related signaling pathway,toll-like receptor signaling pathway,neuroactive ligand-receptor interaction,etc.These predictions were further demonstrated via in vivo animal model experiments.The RNA sequencing results showed that 41 genes were down-regulated(P<0.05)and 86 genes were up-regulated(P<0.05)in the Horcha-6 treated group compared with the untreated group.Those genes were mainly involved in neuromodulation,vascular function,and hormone metabolism.Conclusion:The 55 bio-active components in Horcha-6 regulate inflammation,hormone metabolism,and neurotransmitters and have potential as a therapy to treat migraines.展开更多
基金supported by grants The Natural Science Foundation of Inner Mongolia(2019MS08104)The Natural Science Foundation of Inner Mongolia(2022ZD09)The Central Government Guiding Special Funds for Development of Local Science and Technology(2020ZY0020).
文摘Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treating migraines through the use of network pharmacology and a rat migraine model.Methods:After identifying the active components of Horcha-6,the corresponding genes of the active components’target were obtained from the Universal Protein database,and a“compound-target-disease”network was constructed using Cytoscape 3.9.0 software.For the in vivo experiments,nitroglycerin was injected intraperitoneally into rats to create a migraine model.Pre-treatment with Horcha-6 was administered orally for 14 days,and rats were subjected to migraine-related behavior tests.RNA sequencing was performed to identify the gene expression regulated by Horcha-6 in the trigeminal nerve.Results:A total of 903 chemical components of Horcha-6 have been collected in the liquid chromatography with tandem mass spectrometry.We discovered 55 of the Horcha-6 bio-active components that were evaluated based on their Percent Human Oral Absorption(≥30%)and DL values(≥0.185)on the traditional Chinese medicine systems pharmacology database.The“compound-target-disease”network contained 163 intersection targets with the migraine state.Gene Ontology analysis indicated that these components significantly regulated the immune response,vascular function,oxidative stress,etc.When Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed,we observed that most of the target genes were significantly enriched in the inflammation and neuro-related signaling pathway,toll-like receptor signaling pathway,neuroactive ligand-receptor interaction,etc.These predictions were further demonstrated via in vivo animal model experiments.The RNA sequencing results showed that 41 genes were down-regulated(P<0.05)and 86 genes were up-regulated(P<0.05)in the Horcha-6 treated group compared with the untreated group.Those genes were mainly involved in neuromodulation,vascular function,and hormone metabolism.Conclusion:The 55 bio-active components in Horcha-6 regulate inflammation,hormone metabolism,and neurotransmitters and have potential as a therapy to treat migraines.