Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical...Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.展开更多
Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context...Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context still unclear.Methods:The colorectal carcinoma cell lines HCT116 and SW620 were exposed to TNF-αfor a period of 24 h to instigate an inflammatory response.Subsequent assessments were conducted to measure the expression of inflammatory cytokines,the activity within the p38 mitogen-activated protein kinase(p38 MAPK)and Phosphoinositide 3-Kinase/AKT Serine/Threonine Kinase pathway(PI3K/AKT)signaling cascades.Transcriptome sequencing and subsequent integrative analysis with the Cancer Genome Atlas(TCGA)program database revealed a significant downregulation of the key factor MAD2L2.Enhancement of MAD2L2 expression was facilitated via lentiviral vector-mediated transfection.The influence of this overexpression on TNF-α-prompted inflammation,intracellular signaling pathways,and the migratory and invasive behaviors of the colorectal cancer cells was then scrutinized.Results:TNF-αtreatment significantly increased the expression of Interleukin-1 beta(IL-1β)and Interleukin-6(IL-6),activated the MAPK p38 and PI3K/AKT signaling pathways,and enhanced cell migration and invasion.A decrease in MAD2L2 expression was observed following TNF-αtreatment.However,overexpression of MAD2L2 reversed the effects of TNF-α,reducing IL-1βand IL-6 levels,attenuating PI3K/AKT pathway activation,and inhibiting cell migration and invasion.Conclusions:Overexpression of MAD2L2 attenuates the pro-inflammatory effects of TNF-α,suggesting that MAD2L2 plays a protective role against TNF-α-induced migration and invasion of colorectal carcinoma cells.Therefore,MAD2L2 holds potential as a therapeutic target in the treatment of colorectal cancer.展开更多
Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interfe...Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.展开更多
The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_...The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.展开更多
Objective: To elucidate the relation between human tissue factor pathwayinhibitor-2 (TFPI-2) expression and ovarian tumor migration and invasion. Methods: Human TFPI-2expression vector pBos-Cite-neo/TFPI-2 was transfe...Objective: To elucidate the relation between human tissue factor pathwayinhibitor-2 (TFPI-2) expression and ovarian tumor migration and invasion. Methods: Human TFPI-2expression vector pBos-Cite-neo/TFPI-2 was transfected into ovarian tumor cells line A2780- Afterthe transfected cells were selected by G418, transfected and nontransfected cells were screened forTFPI-2 mRNA and protein by reverse transcription-polymerase chain reaction and Western blotanalysis, respectively. The number of transfected or nontransfected cells passing through membraneof Boyden chamber was counted as the basis assessing tumor cells migratory and invasive behaviors.Results: Expression of mRNA and protein of TFPI-2 was detectable in transfected cells. In invasionassay, the number of TFPI-2-expressing cells to traverse a Matrigel-coated membrane was obviouslydecreased compared with that of nonexpressing cells (59.3±6.5 vs 109.7±5.5, P 【 0.01); While inmigration assay, no significant difference through a noncoated membrane was observed amongtransfected and nontransfected cells (114.7±8.6 vs 127.3±7.1, P 】 0.05). Conclusion: Expression ofTFPI-2 may strongly inhibit the invasive ability of ovarian tumor cells in vitro, but has no effecton the migratory ability which provides an experimental basis for genotherapy of human ovariantumor.展开更多
AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immun...AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immunochemistry. Transcriptional and posttranscriptional levels of Ca MKⅡin tissue samples and MMP2,MMP9 and TIMP-1 expression in the human colon cancer cell line HCT116 were assessed by q RTPCR and western blot. Cell proliferation was detected with the MTT assay. Cancer cell migration and invasion were investigated with the Transwell culture system and woundhealing assay.RESULTS We first demonstrated that CaMK Ⅱ was ove rexpressed in human colon cancers and was associated with cancer differentiation. In the human colon cancer cell line HCT116,the Ca MKII-specific inhibitor KN93,but not its inactive analogue KN92,decreased cancer cell proliferation. Furthermore,KN93 also significantly prohibited HCT116 cell migration and invasion. The specific inhibition of ERK1/2 or p38 decreased the proliferation and migration of colon cancer cells.CONCLUSION Our findings highlight Ca MKⅡ as a potential critical mediator in human colon tumor development and metastasis.展开更多
AIM To identify potential anti-cancer constituents in natural extracts that inhibit cancer cell growth and migration. METHODS Our experiments used high dose thymoquinone (TQ) as an inhibitor to arrest LoVo (a human co...AIM To identify potential anti-cancer constituents in natural extracts that inhibit cancer cell growth and migration. METHODS Our experiments used high dose thymoquinone (TQ) as an inhibitor to arrest LoVo (a human colon adenocarcinoma cell line) cancer cell growth, which was detected by cell proliferation assay and immunoblotting assay. Low dose TQ did not significantly reduce LoVo cancer cell growth. Cyclooxygenase 2 (COX-2) is an enzyme that is involved in the conversion of arachidonic acid into prostaglandin E2 (PGE2) in humans. PGE2 can promote COX-2 protein expression and tumor cell proliferation and was used as a control. RESULTS Our results showed that 20 mu mol/L TQ significantly reduced human LoVo colon cancer cell proliferation. TQ treatment reduced the levels of p-PI3K, p-Akt, p-GSK3 beta, and beta-catenin and thereby inhibited the downstream COX-2 expression. Results also showed that the reduction in COX-2 expression resulted in a reduction in PGE2 levels and the suppression of EP2 and EP4 activation. Further analysis showed that TG treatment inhibited the nuclear translocation of beta-catenin in LoVo cancer cells. The levels of the cofactors LEF-1 and TCF-4 were also decreased in the nucleus following TQ treatment in a dose-dependent manner. Treatment with low dose TQ inhibited the COX-2 expression at the transcriptional level and the regulation of COX-2 expression efficiently reduced LoVo cell migration. The results were further verified in vivo by confirming the effects of TQ and/or PGE2 using tumor xenografts in nude mice. CONCLUSION TQ inhibits LoVo cancer cell growth and migration, and this result highlights the therapeutic advantage of using TQ in combination therapy against colorectal cancer.展开更多
AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2....AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2.Growth rates for Bxpc-3 cells were assessed by methyl thiazolyl tetrazolium(MTT) and colony formation assays.Cell cycle changes were analyzed by flow cytometry.Apoptosis was measured by flow cytometry and Hoechst 33258 fluorescence staining.A scratch assay and a Matrigel invasion assay were used to detect cell migration and invasion.Expression of Bax,Bcl-2,survivin,cyclin D1,matrix metalloproteinase(MMP)-2,MMP-9,cleaved caspase-3,caspase-8,and caspase-9 mRNA were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Bax,Bcl-2,survivin,cyclin D1,cleaved caspase-3,caspase-8 and caspase-9 protein levels were examined by western blotting.Expression of MMP-2 and MMP-9 proteins in culture supernatants were determined by enzymelinked immunosorbent assay(ELISA).RESULTS:Rh2 significantly inhibited Bxpc-3 cell proliferation in a dose-and time-dependent manner,as evaluated by the MTT(P < 0.05) and colony formation assays(P < 0.05).Compared to the control group,Rh2 significantly increased the percentage of Bxpc-3 cells in the G 0 /G 1 phase from 43.32% ± 2.17% to 71.32% ± 1.16%,which was accompanied by a decrease in S phase(from 50.86% ± 1.29% to 28.48% ± 1.18%) and G 2 /M phase(from 5.81% ± 1.19% to 0.20% ± 0.05%) in a dose-dependent manner(P < 0.05),suggesting that Rh2 arrested cell cycle progression at the G 0 /G 1 phase,as measured by flow cytometry.Compared to the control group,cells treated with Rh2 showed significantly higher apoptosis ratios in a dosedependent manner(percentage of early apoptotic cells:from 5.29% ± 2.28% to 38.90% ± 3.42%(F = 56.20,P < 0.05);percentage of late apoptotic cells:from 4.58% ± 1.42% to 36.32% ± 2.73%(F = 86.70,P < 0.05).Rh2 inhibited Bxpc-3 cell migration and invasion,as detected by scratch wound healing assay and Matrigel invasion assay [percentages of scratch wound healing for 12 h,24 h and 48 h(control vs experimental group):37.3% ± 4.8%vs 18.30% ± 1.65%,58.7% ± 3.5% vs 38.00% ± 4.09% and 93.83% ± 4.65% vs 65.50% ± 4.09%,respectively;t = 6.489,t = 6.656 and t = 7.926,respectively,P < 0.05;the number of cells invading at various concentrations(0 μmol/L,35 μmol/L,45 μmol/L and 55 μmol/L):81.10 ± 9.55,46.40 ± 6.95,24.70 ± 6.88 and 8.70 ± 3.34,respectively(F = 502.713,P < 0.05)].RT-PCR,western blotting or ELISA showed that mRNA and protein expression of Bax,cleaved caspase-3 and caspase-9 were upregulated(P < 0.05),while mRNA and protein expression of Bcl-2,survivin,cyclin D1,MMP-2 and MMP-9 were downregulated(P < 0.05).CONCLUSION:Ginsenoside Rh2 inhibits proliferation,migration and invasion and induces apoptosis of the human pancreatic cancer cell line Bxpc-3.展开更多
AIM: To investigate the effects of Annexin A2 (ANXA2) silencing on invasion, migration, and tumorigenic potential of hepatoma cells. METHODS: Human hepatoma cell lines [HepG2, SMMC-7721, SMMC-7402, and MHCC97-H, a nov...AIM: To investigate the effects of Annexin A2 (ANXA2) silencing on invasion, migration, and tumorigenic potential of hepatoma cells. METHODS: Human hepatoma cell lines [HepG2, SMMC-7721, SMMC-7402, and MHCC97-H, a novel human hepatocellular carcinoma (HCC) cell line with high metastasis potential] and a normal hepatocyte cell line(LO2) were used in this study. The protein and mRNA expression levels of ANXA2 were analysed by western blotting and real-time polymerase chain reaction, re-spectively. The intracellular distribution profile of ANXA2 expression was determined by immunofluorescence and immunohistochemistry. Short hairpin RNA target-ing ANXA2 was designed and stably transfected into MHCC97-H cells. Cells were cultured for in vitro analy-ses or subcutaneously injected as xenografts in mice for in vivo analyses. Effects of ANXA2 silencing on cell growth were assessed by cell counting kit-8 (CCK-8) as-say (in vitro ) and tumour-growth assay (in vivo ), on cell cycling was assessed by flow cytometry and propidium iodide staining (in vitro ), and on invasion and migration potential were assessed by transwell assay and wound-healing assay, respectively (both in vitro ). RESULTS: The MHCC97-H cells, which are known to have high metastasis potential, showed the highest lev-el of ANXA2 expression among the four HCC cell types examined; compared to the LO2 cells, the MHCC97-H expression level was 8-times higher. The ANXA2 expres-sion was effectively inhibited (about 80%) by ANXA2-specific small hairpin RNA (shRNA). ANXA2 expression in the MHCC97-H cells was mainly localized to the cel-lular membrane and cytoplasm, and some localization was detected in the nucleus. Moreover, the proliferation of MHCC97-H cells was obviously suppressed by shR-NA-mediated ANXA2 silencing in vitro , and the tumour growth inhibition rate was 38.24% in vivo . The per-centage of MHCC97-H cells in S phase dramatically de-creased (to 27.76%) under ANXA2-silenced conditions. Furthermore, ANXA2-silenced MHCC97-H cells showed lower invasiveness (percentage of invading cells de-creased to 52.16%) and suppressed migratory capacity (migration distance decreased to 63.49%). It is also worth noting that shRNA-mediated silencing of ANXA2 in the MHCC97-H cells led to abnormal apoptosis. CONCLUSION: shRNA-mediated silencing of ANXA2suppresses the invasion, migration, and tumorigenic potential of hepatoma cells, and may represent a useful target of future molecular therapies.展开更多
Objective:To investigate the expression of targeting protein for Xenopus kinesin-like protein 2(TPX2) in breast cancer tissue and to explore its role in proliferation,migration and invasion of breast cancer cells.Meth...Objective:To investigate the expression of targeting protein for Xenopus kinesin-like protein 2(TPX2) in breast cancer tissue and to explore its role in proliferation,migration and invasion of breast cancer cells.Methods:The mRNA and protein expressions of TPX2 in breast cancer tissue and cell lines were assessed by quantitative RT-PCR and Western blot.The effect of TPX2 with RNA interference on proliferation,invasion and migration of breast cancer cells was observed by MTT and Transwell assays.Results:Both mRNA and protein expressions of TPX2 were upregulated in breast cancer tissues compared to tumor-adjacent tissue.TPX2 expression was also upregulated in breast cancer cell lines,and the TPX2 interfered by small interfering RNA could inhibit the proliferation,invasion and migration of breast cancer cells by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.Conclusions:Significantly upregulated TPX2 expression is observed in breast cancer tissue and cells,and contributes to promote the proliferation,migration and invasion of breast cancer cells.展开更多
基金supported by the National Natural Science Foundation of China,No.82104795 (to RH)。
文摘Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.
基金supported by the Ningxia Hui Autonomous Region key research and development programs(Grant No.2021BEG03084)the National Natural Science Foundation of China(Grant No.31660336).
文摘Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context still unclear.Methods:The colorectal carcinoma cell lines HCT116 and SW620 were exposed to TNF-αfor a period of 24 h to instigate an inflammatory response.Subsequent assessments were conducted to measure the expression of inflammatory cytokines,the activity within the p38 mitogen-activated protein kinase(p38 MAPK)and Phosphoinositide 3-Kinase/AKT Serine/Threonine Kinase pathway(PI3K/AKT)signaling cascades.Transcriptome sequencing and subsequent integrative analysis with the Cancer Genome Atlas(TCGA)program database revealed a significant downregulation of the key factor MAD2L2.Enhancement of MAD2L2 expression was facilitated via lentiviral vector-mediated transfection.The influence of this overexpression on TNF-α-prompted inflammation,intracellular signaling pathways,and the migratory and invasive behaviors of the colorectal cancer cells was then scrutinized.Results:TNF-αtreatment significantly increased the expression of Interleukin-1 beta(IL-1β)and Interleukin-6(IL-6),activated the MAPK p38 and PI3K/AKT signaling pathways,and enhanced cell migration and invasion.A decrease in MAD2L2 expression was observed following TNF-αtreatment.However,overexpression of MAD2L2 reversed the effects of TNF-α,reducing IL-1βand IL-6 levels,attenuating PI3K/AKT pathway activation,and inhibiting cell migration and invasion.Conclusions:Overexpression of MAD2L2 attenuates the pro-inflammatory effects of TNF-α,suggesting that MAD2L2 plays a protective role against TNF-α-induced migration and invasion of colorectal carcinoma cells.Therefore,MAD2L2 holds potential as a therapeutic target in the treatment of colorectal cancer.
基金supported by the Gusu Medical Key Talent Project of Suzhou City of China(GSWS2020005)the New Pharmaceutics and Medical Apparatuses Project of Suzhou City of China(SLJ2021007)+3 种基金the Suzhou City Key Clinical Disease Diagnosis and Treatment Technology Special Project,China(LCZX202129)Wujiang Science and Educational Health Revitalization Fund Project,Suzhou,China(WWK202015)the Scientific Research Project of Suzhou Ninth People’s Hospital,Suzhou,China(YK202008)and Suzhou“Science and Education”Youth Science and Technology Project,Suzhou,China(KJXW2020075).
文摘Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.
基金Supported by the Science and Technology Research Project of China Petroleum&Chemical Corporation (No. P22175)。
文摘The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.
文摘Objective: To elucidate the relation between human tissue factor pathwayinhibitor-2 (TFPI-2) expression and ovarian tumor migration and invasion. Methods: Human TFPI-2expression vector pBos-Cite-neo/TFPI-2 was transfected into ovarian tumor cells line A2780- Afterthe transfected cells were selected by G418, transfected and nontransfected cells were screened forTFPI-2 mRNA and protein by reverse transcription-polymerase chain reaction and Western blotanalysis, respectively. The number of transfected or nontransfected cells passing through membraneof Boyden chamber was counted as the basis assessing tumor cells migratory and invasive behaviors.Results: Expression of mRNA and protein of TFPI-2 was detectable in transfected cells. In invasionassay, the number of TFPI-2-expressing cells to traverse a Matrigel-coated membrane was obviouslydecreased compared with that of nonexpressing cells (59.3±6.5 vs 109.7±5.5, P 【 0.01); While inmigration assay, no significant difference through a noncoated membrane was observed amongtransfected and nontransfected cells (114.7±8.6 vs 127.3±7.1, P 】 0.05). Conclusion: Expression ofTFPI-2 may strongly inhibit the invasive ability of ovarian tumor cells in vitro, but has no effecton the migratory ability which provides an experimental basis for genotherapy of human ovariantumor.
基金Supported by the National Natural Science Foundation of China,No.81302131
文摘AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immunochemistry. Transcriptional and posttranscriptional levels of Ca MKⅡin tissue samples and MMP2,MMP9 and TIMP-1 expression in the human colon cancer cell line HCT116 were assessed by q RTPCR and western blot. Cell proliferation was detected with the MTT assay. Cancer cell migration and invasion were investigated with the Transwell culture system and woundhealing assay.RESULTS We first demonstrated that CaMK Ⅱ was ove rexpressed in human colon cancers and was associated with cancer differentiation. In the human colon cancer cell line HCT116,the Ca MKII-specific inhibitor KN93,but not its inactive analogue KN92,decreased cancer cell proliferation. Furthermore,KN93 also significantly prohibited HCT116 cell migration and invasion. The specific inhibition of ERK1/2 or p38 decreased the proliferation and migration of colon cancer cells.CONCLUSION Our findings highlight Ca MKⅡ as a potential critical mediator in human colon tumor development and metastasis.
基金Supported by (in part) the Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence,No.MOHW105-TDU-B-212-133019
文摘AIM To identify potential anti-cancer constituents in natural extracts that inhibit cancer cell growth and migration. METHODS Our experiments used high dose thymoquinone (TQ) as an inhibitor to arrest LoVo (a human colon adenocarcinoma cell line) cancer cell growth, which was detected by cell proliferation assay and immunoblotting assay. Low dose TQ did not significantly reduce LoVo cancer cell growth. Cyclooxygenase 2 (COX-2) is an enzyme that is involved in the conversion of arachidonic acid into prostaglandin E2 (PGE2) in humans. PGE2 can promote COX-2 protein expression and tumor cell proliferation and was used as a control. RESULTS Our results showed that 20 mu mol/L TQ significantly reduced human LoVo colon cancer cell proliferation. TQ treatment reduced the levels of p-PI3K, p-Akt, p-GSK3 beta, and beta-catenin and thereby inhibited the downstream COX-2 expression. Results also showed that the reduction in COX-2 expression resulted in a reduction in PGE2 levels and the suppression of EP2 and EP4 activation. Further analysis showed that TG treatment inhibited the nuclear translocation of beta-catenin in LoVo cancer cells. The levels of the cofactors LEF-1 and TCF-4 were also decreased in the nucleus following TQ treatment in a dose-dependent manner. Treatment with low dose TQ inhibited the COX-2 expression at the transcriptional level and the regulation of COX-2 expression efficiently reduced LoVo cell migration. The results were further verified in vivo by confirming the effects of TQ and/or PGE2 using tumor xenografts in nude mice. CONCLUSION TQ inhibits LoVo cancer cell growth and migration, and this result highlights the therapeutic advantage of using TQ in combination therapy against colorectal cancer.
基金Supported by National Natural Science Foundation of China,No. 30700252Health Department Project of Guangxi,No.Z2012104Education Department Project of Guangxi,No.201204LX048
文摘AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2.Growth rates for Bxpc-3 cells were assessed by methyl thiazolyl tetrazolium(MTT) and colony formation assays.Cell cycle changes were analyzed by flow cytometry.Apoptosis was measured by flow cytometry and Hoechst 33258 fluorescence staining.A scratch assay and a Matrigel invasion assay were used to detect cell migration and invasion.Expression of Bax,Bcl-2,survivin,cyclin D1,matrix metalloproteinase(MMP)-2,MMP-9,cleaved caspase-3,caspase-8,and caspase-9 mRNA were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Bax,Bcl-2,survivin,cyclin D1,cleaved caspase-3,caspase-8 and caspase-9 protein levels were examined by western blotting.Expression of MMP-2 and MMP-9 proteins in culture supernatants were determined by enzymelinked immunosorbent assay(ELISA).RESULTS:Rh2 significantly inhibited Bxpc-3 cell proliferation in a dose-and time-dependent manner,as evaluated by the MTT(P < 0.05) and colony formation assays(P < 0.05).Compared to the control group,Rh2 significantly increased the percentage of Bxpc-3 cells in the G 0 /G 1 phase from 43.32% ± 2.17% to 71.32% ± 1.16%,which was accompanied by a decrease in S phase(from 50.86% ± 1.29% to 28.48% ± 1.18%) and G 2 /M phase(from 5.81% ± 1.19% to 0.20% ± 0.05%) in a dose-dependent manner(P < 0.05),suggesting that Rh2 arrested cell cycle progression at the G 0 /G 1 phase,as measured by flow cytometry.Compared to the control group,cells treated with Rh2 showed significantly higher apoptosis ratios in a dosedependent manner(percentage of early apoptotic cells:from 5.29% ± 2.28% to 38.90% ± 3.42%(F = 56.20,P < 0.05);percentage of late apoptotic cells:from 4.58% ± 1.42% to 36.32% ± 2.73%(F = 86.70,P < 0.05).Rh2 inhibited Bxpc-3 cell migration and invasion,as detected by scratch wound healing assay and Matrigel invasion assay [percentages of scratch wound healing for 12 h,24 h and 48 h(control vs experimental group):37.3% ± 4.8%vs 18.30% ± 1.65%,58.7% ± 3.5% vs 38.00% ± 4.09% and 93.83% ± 4.65% vs 65.50% ± 4.09%,respectively;t = 6.489,t = 6.656 and t = 7.926,respectively,P < 0.05;the number of cells invading at various concentrations(0 μmol/L,35 μmol/L,45 μmol/L and 55 μmol/L):81.10 ± 9.55,46.40 ± 6.95,24.70 ± 6.88 and 8.70 ± 3.34,respectively(F = 502.713,P < 0.05)].RT-PCR,western blotting or ELISA showed that mRNA and protein expression of Bax,cleaved caspase-3 and caspase-9 were upregulated(P < 0.05),while mRNA and protein expression of Bcl-2,survivin,cyclin D1,MMP-2 and MMP-9 were downregulated(P < 0.05).CONCLUSION:Ginsenoside Rh2 inhibits proliferation,migration and invasion and induces apoptosis of the human pancreatic cancer cell line Bxpc-3.
基金Supported by The Society Development of Nantong,No.HS2012034the Jiangsu Health Projects,No.BL2012053 and No.K201102+1 种基金the Priority Academic Program Development of Jiangsuthe International S and T Cooperation Program of China,No.2013DFA32150
文摘AIM: To investigate the effects of Annexin A2 (ANXA2) silencing on invasion, migration, and tumorigenic potential of hepatoma cells. METHODS: Human hepatoma cell lines [HepG2, SMMC-7721, SMMC-7402, and MHCC97-H, a novel human hepatocellular carcinoma (HCC) cell line with high metastasis potential] and a normal hepatocyte cell line(LO2) were used in this study. The protein and mRNA expression levels of ANXA2 were analysed by western blotting and real-time polymerase chain reaction, re-spectively. The intracellular distribution profile of ANXA2 expression was determined by immunofluorescence and immunohistochemistry. Short hairpin RNA target-ing ANXA2 was designed and stably transfected into MHCC97-H cells. Cells were cultured for in vitro analy-ses or subcutaneously injected as xenografts in mice for in vivo analyses. Effects of ANXA2 silencing on cell growth were assessed by cell counting kit-8 (CCK-8) as-say (in vitro ) and tumour-growth assay (in vivo ), on cell cycling was assessed by flow cytometry and propidium iodide staining (in vitro ), and on invasion and migration potential were assessed by transwell assay and wound-healing assay, respectively (both in vitro ). RESULTS: The MHCC97-H cells, which are known to have high metastasis potential, showed the highest lev-el of ANXA2 expression among the four HCC cell types examined; compared to the LO2 cells, the MHCC97-H expression level was 8-times higher. The ANXA2 expres-sion was effectively inhibited (about 80%) by ANXA2-specific small hairpin RNA (shRNA). ANXA2 expression in the MHCC97-H cells was mainly localized to the cel-lular membrane and cytoplasm, and some localization was detected in the nucleus. Moreover, the proliferation of MHCC97-H cells was obviously suppressed by shR-NA-mediated ANXA2 silencing in vitro , and the tumour growth inhibition rate was 38.24% in vivo . The per-centage of MHCC97-H cells in S phase dramatically de-creased (to 27.76%) under ANXA2-silenced conditions. Furthermore, ANXA2-silenced MHCC97-H cells showed lower invasiveness (percentage of invading cells de-creased to 52.16%) and suppressed migratory capacity (migration distance decreased to 63.49%). It is also worth noting that shRNA-mediated silencing of ANXA2 in the MHCC97-H cells led to abnormal apoptosis. CONCLUSION: shRNA-mediated silencing of ANXA2suppresses the invasion, migration, and tumorigenic potential of hepatoma cells, and may represent a useful target of future molecular therapies.
基金Supported by National Science Foundation(81502322)
文摘Objective:To investigate the expression of targeting protein for Xenopus kinesin-like protein 2(TPX2) in breast cancer tissue and to explore its role in proliferation,migration and invasion of breast cancer cells.Methods:The mRNA and protein expressions of TPX2 in breast cancer tissue and cell lines were assessed by quantitative RT-PCR and Western blot.The effect of TPX2 with RNA interference on proliferation,invasion and migration of breast cancer cells was observed by MTT and Transwell assays.Results:Both mRNA and protein expressions of TPX2 were upregulated in breast cancer tissues compared to tumor-adjacent tissue.TPX2 expression was also upregulated in breast cancer cell lines,and the TPX2 interfered by small interfering RNA could inhibit the proliferation,invasion and migration of breast cancer cells by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.Conclusions:Significantly upregulated TPX2 expression is observed in breast cancer tissue and cells,and contributes to promote the proliferation,migration and invasion of breast cancer cells.