Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome...Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.展开更多
This paper presents an efficient interactive differential evolution ODE) to solve the multi-objective security environmental/economic dispatch (SEED) pro- blem considering multi shunt flexible AC transmission syst...This paper presents an efficient interactive differential evolution ODE) to solve the multi-objective security environmental/economic dispatch (SEED) pro- blem considering multi shunt flexible AC transmission system (FACTS) devices. Two sub problems are proposed. The first one is related to the active power planning to minimize the combined total fuel cost and emissions, while the second is a reactive power planning (RPP) using multi shunt FACTS device based static VAR compensator (SVC) installed at specified buses to make fine corrections to the voltage deviation, voltage phase profiles and reactive power violation. The migration operation inspired from biogeography-based optimization (BBO) algorithm is newly introduced in the proposed approach, thereby effectively exploring and exploiting promising regions in a space search by creating dynamically new efficient partitions. This new mechanism based migration between individuals from different subsystems makes the initial partitions to react more by changing experiences. To validate the robustness of the proposed approach, the proposed algorithm is tested on the Algerian 59-bus electrical network and on a large system, 40 generating units considering valve-point loading effect. Comparison of the results with recent global optimization methods show the superiority of the proposed IDE approach and confirm its potential for solving practical optimal power flow in terms of solution quality and convergence characteristics.展开更多
基金the Open Fund(PLC201104)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the National Natural Science Foundation of China(No.61072073)the Key Project of Education Commission of Sichuan Province(No.10ZA072)
文摘Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.
文摘This paper presents an efficient interactive differential evolution ODE) to solve the multi-objective security environmental/economic dispatch (SEED) pro- blem considering multi shunt flexible AC transmission system (FACTS) devices. Two sub problems are proposed. The first one is related to the active power planning to minimize the combined total fuel cost and emissions, while the second is a reactive power planning (RPP) using multi shunt FACTS device based static VAR compensator (SVC) installed at specified buses to make fine corrections to the voltage deviation, voltage phase profiles and reactive power violation. The migration operation inspired from biogeography-based optimization (BBO) algorithm is newly introduced in the proposed approach, thereby effectively exploring and exploiting promising regions in a space search by creating dynamically new efficient partitions. This new mechanism based migration between individuals from different subsystems makes the initial partitions to react more by changing experiences. To validate the robustness of the proposed approach, the proposed algorithm is tested on the Algerian 59-bus electrical network and on a large system, 40 generating units considering valve-point loading effect. Comparison of the results with recent global optimization methods show the superiority of the proposed IDE approach and confirm its potential for solving practical optimal power flow in terms of solution quality and convergence characteristics.