期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合光谱形态特征的苹果霉心病检测方法 被引量:6
1
作者 刘昊灵 张仲雄 +3 位作者 陈昂 浦育歌 赵娟 胡瑾 《农业工程学报》 EI CAS CSCD 北大核心 2023年第1期162-170,共9页
针对轻微霉心病和健康苹果光谱差异较小,致使基于可见/近红外特征光谱的检测方法对轻微霉心病检测准确率较低的问题。该研究将光谱形态特征与光谱特征融合的方法引入霉心病模型构建,建立了融合光谱形态特征的判别模型。以215个苹果可见... 针对轻微霉心病和健康苹果光谱差异较小,致使基于可见/近红外特征光谱的检测方法对轻微霉心病检测准确率较低的问题。该研究将光谱形态特征与光谱特征融合的方法引入霉心病模型构建,建立了融合光谱形态特征的判别模型。以215个苹果可见/近红外光谱为样本,分析了不同预处理和特征提取组合对建模效果的影响,并完成了光谱特征的提取;分析健康果和霉心病苹果平均光谱的差异性,提取波峰、波谷等差异明显的光谱形态特征点,对比波段比、波段差和归一化强度差三类形态特征获取方法;最终建立光谱形态特征参数和光谱特征融合的苹果霉心病模型。试验结果表明,归一化预处理后提取的特征光谱和归一化强度差形态特征融合后模型判别准确率最高,在支持向量机模型中训练集、测试集判别准确率分别为98.6%和96.3%。特别是当发病程度小于10%时,该研究的判别模型准确率高于95%,表明通过融合光谱形态特征可以提升轻微病变霉心苹果的判别准确率。 展开更多
关键词 光谱 病害 苹果霉心病 光谱形态特征 归一化强度差 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部