Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the ...Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.展开更多
Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything...Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.展开更多
The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnect...The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzz...This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.展开更多
Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n...Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.展开更多
Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universa...Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universal interconnection mechanisms between the physical and digital worlds.Since the complexity level of the CPS increases,an adversary attack becomes possible in several ways.Assuring security is a vital aspect of the CPS environment.Due to the massive surge in the data size,the design of anomaly detection techniques becomes a challenging issue,and domain-specific knowledge can be applied to resolve it.This article develops an Aquila Optimizer with Parameter Tuned Machine Learning Based Anomaly Detection(AOPTML-AD)technique in the CPS environment.The presented AOPTML-AD model intends to recognize and detect abnormal behaviour in the CPS environment.The presented AOPTML-AD framework initially pre-processes the network data by converting them into a compatible format.Besides,the improved Aquila optimization algorithm-based feature selection(IAOA-FS)algorithm is designed to choose an optimal feature subset.Along with that,the chimp optimization algorithm(ChOA)with an adaptive neuro-fuzzy inference system(ANFIS)model can be employed to recognise anomalies in the CPS environment.The ChOA is applied for optimal adjusting of the membership function(MF)indulged in the ANFIS method.The performance validation of the AOPTML-AD algorithm is carried out using the benchmark dataset.The extensive comparative study reported the better performance of the AOPTML-AD technique compared to recent models,with an accuracy of 99.37%.展开更多
A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data t...A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data through environmental monitoring.The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction.This study employs a deep learning method,CNN-LSTM,and two-way feature extraction to classify audio systems within CPS.The primary objective of this system,which is built upon a convolutional neural network(CNN)with Long Short Term Memory(LSTM),is to analyze the vocalization patterns of two different species of anurans.It has been demonstrated that CNNs,when combined with mel-spectrograms for sound analysis,are suitable for classifying ambient noises.Initially,the data is augmented and preprocessed.Next,the mel spectrogram features are extracted through two-way feature extraction.First,Principal Component Analysis(PCA)is utilized for dimensionality reduction,followed by Transfer learning for audio feature extraction.Finally,the classification is performed using the CNN-LSTM process.This methodology can potentially be employed for categorizing various biological acoustic objects and analyzing biodiversity indexes in natural environments,resulting in high classification accuracy.The study highlights that this CNNLSTM approach enables cost-effective and resource-efficient monitoring of large natural regions.The dissemination of updated CNN-LSTM models across distant IoT nodes is facilitated flexibly and dynamically through the utilization of CPS.展开更多
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time...The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.展开更多
BACKGROUND Coronary artery diseases can cause myocardial ischemia and hypoxia,angina pectoris,myocardial infarction,arrhythmia,and even sudden death led to inflight incapacitation of aircrew.As the main cause of groun...BACKGROUND Coronary artery diseases can cause myocardial ischemia and hypoxia,angina pectoris,myocardial infarction,arrhythmia,and even sudden death led to inflight incapacitation of aircrew.As the main cause of grounding due to illness,they severe threats to the health and fighting strength of military aircrew.Early warning in an early and accurate manner and early intervention of diseases possibly resulting in inflight incapacitation are key emphases of aeromedical support in clinic.AIM To figure out the flight factors and clinical characteristics of military aircrew with abnormal results of coronary artery computed tomographic angiography(CTA),thereby rendering theoretical references for clinical aeromedical support of military flying personnel.METHODS The clinical data of 15 flying personnel who received physical examinations in a military medical center from December 2020 to June 2023 and were diagnosed with coronary artery diseases by coronary artery CTA were collected and retrospectively analyzed,and a descriptive statistical analysis was conducted on their onset age,aircraft type and clinical data.RESULTS The 15 military flying personnel diagnosed with coronary artery diseases by coronary artery CTA were composed of 9 pilots,1 navigator and 5 air combat service workers.Multi-vessel disease was detected in 9 flying personnel,among which 8(88.9%)were pilots.Flying personnel with multi-vessel disease had higher content of cholesterol,low-density lipoprotein cholesterol and apolipoprotein B than those with single-vessel disease.CONCLUSION Coronary artery diseases are the major heart disease for the grounding of flying personnel due to illness,which can lead to inflight incapacitation.Coronary artery CTA is conducive to early detection and early intervention treatment of such diseases in clinic.展开更多
One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this pa...One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.展开更多
With the booming of cyber attacks and cyber criminals against cyber-physical systems(CPSs),detecting these attacks remains challenging.It might be the worst of times,but it might be the best of times because of opport...With the booming of cyber attacks and cyber criminals against cyber-physical systems(CPSs),detecting these attacks remains challenging.It might be the worst of times,but it might be the best of times because of opportunities brought by machine learning(ML),in particular deep learning(DL).In general,DL delivers superior performance to ML because of its layered setting and its effective algorithm for extract useful information from training data.DL models are adopted quickly to cyber attacks against CPS systems.In this survey,a holistic view of recently proposed DL solutions is provided to cyber attack detection in the CPS context.A six-step DL driven methodology is provided to summarize and analyze the surveyed literature for applying DL methods to detect cyber attacks against CPS systems.The methodology includes CPS scenario analysis,cyber attack identification,ML problem formulation,DL model customization,data acquisition for training,and performance evaluation.The reviewed works indicate great potential to detect cyber attacks against CPS through DL modules.Moreover,excellent performance is achieved partly because of several highquality datasets that are readily available for public use.Furthermore,challenges,opportunities,and research trends are pointed out for future research.展开更多
The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved...The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.展开更多
The emerging prototype for a Smart City is one of an urban environment with a new generation of inno- vative services for transportation, energy distribution, healthcare, environmental monitoring, business, commerce, ...The emerging prototype for a Smart City is one of an urban environment with a new generation of inno- vative services for transportation, energy distribution, healthcare, environmental monitoring, business, commerce, emergency response, and social activities. Enabling the technology for such a setting re- quires a viewpoint of Smart Cities as cyber-physical systems (CPSs) that include new software platforms and strict requirements for mobility, security, safety, privacy, and the processing of massive amounts of information. This paper identifies some key defining characteristics of a Smart City, discusses some lessons learned from viewing them as CPSs, and outlines some fundamental research issues that remain largely open.展开更多
In today's modern electric vehicles,enhancing the safety-critical cyber-physical system(CPS)'s performance is necessary for the safe maneuverability of the vehicle.As a typical CPS,the braking system is crucia...In today's modern electric vehicles,enhancing the safety-critical cyber-physical system(CPS)'s performance is necessary for the safe maneuverability of the vehicle.As a typical CPS,the braking system is crucial for the vehicle design and safe control.However,precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy.In this paper,a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach.A deep neural network(DNN)is structured and trained using deep-learning training techniques,such as,dropout and rectified units.These techniques are utilized to obtain more accurate model for brake pressure state estimation applications.The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing.The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles.Based on these experimental data,the DNN is trained and the performance of the proposed state estimation approach is validated accordingly.The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.展开更多
This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control func...This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.展开更多
Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based ...Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based on the review of state of art and also the state of practice in dif- ferent countries, shortcomings have been revealed as the lacking of applicable framework for the implementation of Industrie 4.0. Therefore, in order to shed some light on the knowledge of the details, a reference architecture is developed, where four perspectives namely manufacturing process, devices, software and engineering have been highlighted. Moreover, with a view on the importance of Cyber-Physical systems, the structure of Cyber-Physical System are established for the in-depth analysis. Further cases with the usage of Cyber-Physical System are also arranged, which attempts to provide some implications to match the theoretical findings together with the experience of companies. In general, results of this paper could be useful for the extending on the theoretical understanding of Industrie 4.0. Additionally, applied framework and proto- types based on the usage of Cyber-Physical Systems are also potential to help companies to design the layout of sensor nets, to achieve coordination and controlling of smart machines, to realize synchronous production with systematic structure, and to extend the usage of information and communication technologies to the maintenance scheduling.展开更多
In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the st...In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors.Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identicallydistributed random variables.From the defenders’view,the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence.At the local filtering stage,a set of variance-constrained local filters are designed where the upper bounds(on the filtering error covariances)are first acquired and later minimized by appropriately designing filter parameters.At the fusion stage,all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule.Furthermore,the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance.A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.展开更多
Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the p...Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493).
文摘Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.
文摘Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.
文摘The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62263005)Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA238029)+2 种基金Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2022GXZDSY004)Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023298)Innovation Project of GUET Graduate Education (Grant Nos. 2022YCXS149 and 2022YCXS155)。
文摘This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.
基金supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE).
文摘Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.
文摘Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universal interconnection mechanisms between the physical and digital worlds.Since the complexity level of the CPS increases,an adversary attack becomes possible in several ways.Assuring security is a vital aspect of the CPS environment.Due to the massive surge in the data size,the design of anomaly detection techniques becomes a challenging issue,and domain-specific knowledge can be applied to resolve it.This article develops an Aquila Optimizer with Parameter Tuned Machine Learning Based Anomaly Detection(AOPTML-AD)technique in the CPS environment.The presented AOPTML-AD model intends to recognize and detect abnormal behaviour in the CPS environment.The presented AOPTML-AD framework initially pre-processes the network data by converting them into a compatible format.Besides,the improved Aquila optimization algorithm-based feature selection(IAOA-FS)algorithm is designed to choose an optimal feature subset.Along with that,the chimp optimization algorithm(ChOA)with an adaptive neuro-fuzzy inference system(ANFIS)model can be employed to recognise anomalies in the CPS environment.The ChOA is applied for optimal adjusting of the membership function(MF)indulged in the ANFIS method.The performance validation of the AOPTML-AD algorithm is carried out using the benchmark dataset.The extensive comparative study reported the better performance of the AOPTML-AD technique compared to recent models,with an accuracy of 99.37%.
基金Funded by Institutional Fund Projects under Grant No.IFPIP:236-611-1442 by Ministry of Education and King Abdulaziz University,Jeddah,Saudi Arabia(A.O.A.).
文摘A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data through environmental monitoring.The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction.This study employs a deep learning method,CNN-LSTM,and two-way feature extraction to classify audio systems within CPS.The primary objective of this system,which is built upon a convolutional neural network(CNN)with Long Short Term Memory(LSTM),is to analyze the vocalization patterns of two different species of anurans.It has been demonstrated that CNNs,when combined with mel-spectrograms for sound analysis,are suitable for classifying ambient noises.Initially,the data is augmented and preprocessed.Next,the mel spectrogram features are extracted through two-way feature extraction.First,Principal Component Analysis(PCA)is utilized for dimensionality reduction,followed by Transfer learning for audio feature extraction.Finally,the classification is performed using the CNN-LSTM process.This methodology can potentially be employed for categorizing various biological acoustic objects and analyzing biodiversity indexes in natural environments,resulting in high classification accuracy.The study highlights that this CNNLSTM approach enables cost-effective and resource-efficient monitoring of large natural regions.The dissemination of updated CNN-LSTM models across distant IoT nodes is facilitated flexibly and dynamically through the utilization of CPS.
基金supported in part by the National Natural Science Foundation of China(Grant No.62276274)Shaanxi Natural Science Foundation(Grant No.2023-JC-YB-528)Chinese aeronautical establishment(Grant No.201851U8012)。
文摘The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.
基金Supported by Enhancement Foundation Program of Naval Medical Center of Naval Medical University.
文摘BACKGROUND Coronary artery diseases can cause myocardial ischemia and hypoxia,angina pectoris,myocardial infarction,arrhythmia,and even sudden death led to inflight incapacitation of aircrew.As the main cause of grounding due to illness,they severe threats to the health and fighting strength of military aircrew.Early warning in an early and accurate manner and early intervention of diseases possibly resulting in inflight incapacitation are key emphases of aeromedical support in clinic.AIM To figure out the flight factors and clinical characteristics of military aircrew with abnormal results of coronary artery computed tomographic angiography(CTA),thereby rendering theoretical references for clinical aeromedical support of military flying personnel.METHODS The clinical data of 15 flying personnel who received physical examinations in a military medical center from December 2020 to June 2023 and were diagnosed with coronary artery diseases by coronary artery CTA were collected and retrospectively analyzed,and a descriptive statistical analysis was conducted on their onset age,aircraft type and clinical data.RESULTS The 15 military flying personnel diagnosed with coronary artery diseases by coronary artery CTA were composed of 9 pilots,1 navigator and 5 air combat service workers.Multi-vessel disease was detected in 9 flying personnel,among which 8(88.9%)were pilots.Flying personnel with multi-vessel disease had higher content of cholesterol,low-density lipoprotein cholesterol and apolipoprotein B than those with single-vessel disease.CONCLUSION Coronary artery diseases are the major heart disease for the grounding of flying personnel due to illness,which can lead to inflight incapacitation.Coronary artery CTA is conducive to early detection and early intervention treatment of such diseases in clinic.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61601346 and 62377039)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ6044)+2 种基金the Ministry of Industry and Information Technology of the People's Republic of China(Grant No.2023-276-1-1)the Fundamental Research Funds for the Central Universities,Northwestern Polytechnical University(Grant No.31020180QD089)the Aeronautical Science Foundation of China(Grant Nos.20200043053004 and 20200043053005)。
文摘One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.
文摘With the booming of cyber attacks and cyber criminals against cyber-physical systems(CPSs),detecting these attacks remains challenging.It might be the worst of times,but it might be the best of times because of opportunities brought by machine learning(ML),in particular deep learning(DL).In general,DL delivers superior performance to ML because of its layered setting and its effective algorithm for extract useful information from training data.DL models are adopted quickly to cyber attacks against CPS systems.In this survey,a holistic view of recently proposed DL solutions is provided to cyber attack detection in the CPS context.A six-step DL driven methodology is provided to summarize and analyze the surveyed literature for applying DL methods to detect cyber attacks against CPS systems.The methodology includes CPS scenario analysis,cyber attack identification,ML problem formulation,DL model customization,data acquisition for training,and performance evaluation.The reviewed works indicate great potential to detect cyber attacks against CPS through DL modules.Moreover,excellent performance is achieved partly because of several highquality datasets that are readily available for public use.Furthermore,challenges,opportunities,and research trends are pointed out for future research.
文摘The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.
文摘The emerging prototype for a Smart City is one of an urban environment with a new generation of inno- vative services for transportation, energy distribution, healthcare, environmental monitoring, business, commerce, emergency response, and social activities. Enabling the technology for such a setting re- quires a viewpoint of Smart Cities as cyber-physical systems (CPSs) that include new software platforms and strict requirements for mobility, security, safety, privacy, and the processing of massive amounts of information. This paper identifies some key defining characteristics of a Smart City, discusses some lessons learned from viewing them as CPSs, and outlines some fundamental research issues that remain largely open.
文摘In today's modern electric vehicles,enhancing the safety-critical cyber-physical system(CPS)'s performance is necessary for the safe maneuverability of the vehicle.As a typical CPS,the braking system is crucial for the vehicle design and safe control.However,precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy.In this paper,a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach.A deep neural network(DNN)is structured and trained using deep-learning training techniques,such as,dropout and rectified units.These techniques are utilized to obtain more accurate model for brake pressure state estimation applications.The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing.The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles.Based on these experimental data,the DNN is trained and the performance of the proposed state estimation approach is validated accordingly.The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.
基金the National Natural Science Foundation of China(61873057)the Education Department of Jilin Province(JJKH20200118KJ).
文摘This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.
文摘Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based on the review of state of art and also the state of practice in dif- ferent countries, shortcomings have been revealed as the lacking of applicable framework for the implementation of Industrie 4.0. Therefore, in order to shed some light on the knowledge of the details, a reference architecture is developed, where four perspectives namely manufacturing process, devices, software and engineering have been highlighted. Moreover, with a view on the importance of Cyber-Physical systems, the structure of Cyber-Physical System are established for the in-depth analysis. Further cases with the usage of Cyber-Physical System are also arranged, which attempts to provide some implications to match the theoretical findings together with the experience of companies. In general, results of this paper could be useful for the extending on the theoretical understanding of Industrie 4.0. Additionally, applied framework and proto- types based on the usage of Cyber-Physical Systems are also potential to help companies to design the layout of sensor nets, to achieve coordination and controlling of smart machines, to realize synchronous production with systematic structure, and to extend the usage of information and communication technologies to the maintenance scheduling.
基金supported in part by the National Natural Science Foundation of China(62173068,61803074,61703245,61973102,U2030205,61903065,61671109,U1830207,U1830133)the China Postdoctoral Science Foundation(2018M643441,2017M623005)+1 种基金the Royal Society of UKthe Alexander von Humboldt Foundation of Germany。
文摘In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors.Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identicallydistributed random variables.From the defenders’view,the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence.At the local filtering stage,a set of variance-constrained local filters are designed where the upper bounds(on the filtering error covariances)are first acquired and later minimized by appropriately designing filter parameters.At the fusion stage,all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule.Furthermore,the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance.A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.