Ordnance material is the physical basis of ordnance equipment maintenance and support. With the increase of technology content and the enhancement of structural complexity of ordnance equipment,the traditional way of ...Ordnance material is the physical basis of ordnance equipment maintenance and support. With the increase of technology content and the enhancement of structural complexity of ordnance equipment,the traditional way of military self-independent support is unable to meet the troops' requirements. It has become an inevitable trend to integrate ordnance materials with the militarycivilian joint support. However, there is a problem demanding prompt solution,that is,to distinguish the categories of ordnance material that can be supported by civilian source. Based on the inherent properties of ordnance material, a method to classify ordnance materials military-civilian joint support categories based on multiple attribute decision was proposed. The effectiveness was validated through practical cases.展开更多
The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the...The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.展开更多
According to the structure feature of the governing equations of spaceaxisymmetric problem in transversely, isotropic piezoelectric material. using the methodof introducing potential .function one by. one, in this pap...According to the structure feature of the governing equations of spaceaxisymmetric problem in transversely, isotropic piezoelectric material. using the methodof introducing potential .function one by. one, in this paper we obtain the so-calledgeneral solution of displacement and eleclric potential function denoied by uniquepoiential.function which satisfies specific partiality equations. As an applying exampleof the general solution, we solve problem of semi-infinile boodt. made of piezoelectricmaterial, on the surface of the semi-infinite body a concentrative .force is applied, andget the analytic .formulations of stress and electric displacement comiponenis. Thegeneral solution provided by this paper can be used as a tool to analyse the mechanical-electrical coupling behavior of piezoelecrtic material which conlains defects such ascavity inclusion. penny-shape crack. and so on. The result of the solved problem canbe used directly to analyse contact problems which take place between twopiezoelectric bodies or piezoelectric body. and elastic body .展开更多
The status of material delivery of an automobile general assembly line is analyzed, and the technique to achieve the real-time tracking of assembly status information is proposed based on RFID( Radio Frequency Identi...The status of material delivery of an automobile general assembly line is analyzed, and the technique to achieve the real-time tracking of assembly status information is proposed based on RFID( Radio Frequency Identification). Thus the consumption of line-side buffer is obtained dynamically, then the type and quantity of needed material are fed back to the subsystem of material handling; the algorithm for determining the best time departure time of delivery driver based on minimizing of total time penalty function is proposed. This approach makes the material amount of a single delivery trip maximized and improves the efficiency of delivery drivers significantly in the case of does not affect the assembly line normal throughput. Additionally, although this dynamic material handling method is developed for the automobile assembly plant, it should be pointed out that this method is also applicable to other mixed model assembly plants such as electronics, semiconductor and aerospace industry.展开更多
Complicated changes occur inside the steel parts during quenching process. A three dimensional nonlinear mathematical model for quenching process has been established and the numerical simulation on temperature field,...Complicated changes occur inside the steel parts during quenching process. A three dimensional nonlinear mathematical model for quenching process has been established and the numerical simulation on temperature field, microstructure and stress field has been realized. The alternative technique for the formation of high-strength materials has been developed on the basis of intensification of heat transfer at phase transformations. The technology for the achievement of maximum compressive residual stresses on the hard surface is introduced. It has been shown that there is an optimal depth of hard layer providing the maximum compression stresses on the surface. It has also been established that in the surface hard layer additional strengthening (superstrengthening) of the material is observed. The generalized formula for the determination of the time of reaching maximum compressive stresses on the surface has been proposed.展开更多
In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using...In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory. The most general bending stretching couplings, the effect of eccentricity of stiffeners are considered. Then, for general stability of composite triangular grid stiffened conical shells without twist coupling terms, the approximate formulas are obtained for critical external pressure by using Galerkin's procedure. Numerical examples for a certain C/E composite conical shells with inside triangular grid stiffeners are calculated and the results are in good agreement with the experimental data. Finally, the influence of some parameters on critical external pressure is studied. The stability equations developed and the formulas for critical external pressure obtained in this paper should be very useful in the astronautical engineering design.展开更多
To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pres...To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pressurehull of submarines under uniform external hydrostatic pressure using bothfinite element analysis(FEA)and optimization tools.A comprehensive study about the optimum design of the pressure hull,to minimize the weight and increase the volume,to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor(B.F)is taken as an objective function with constraints of plate and frame yielding,general instability and deflection.The optimization process contains many design variables such as pressure-hull plate thickness,unsupported spacing,dimensions of long and ring beams andfinally the elliptical submersible pressure-hull diameters.The optimization process was conducted using ANSYS parametric design language(APDL)and ISIGHT.The Multi-Island Genetic Algorithm(G.A)is considered to conduct the optimization process.Additionally,parametric analysis is done on the pressure hull to examine the effect of different design variables on the pressure-hull design.As a result,the B.F of the proposed optimal model is reduced by an average of 31.78%compared with Reference Model(RM).Maximum von Mises stress is reduced by 27%as well.These results can be helpful for submarine pressure-hull designers.展开更多
Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncert...Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.展开更多
An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solut...An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solution of three-dimensional piezoelasticity and the four harmonics involved are represented by one complex potential.Previous results in potential theory are then utilized to obtain the exact solution that is expressed in terms of elementary functions.Comparison is made between the current results with those published and good agreement is obtained.展开更多
Exact solutions of three-dimensional(3D)crack problems are much less in number than those of two-dimensional ones,especially for multi-field coupling media exhibiting a certain kind of material anisotropy.An exact3Dth...Exact solutions of three-dimensional(3D)crack problems are much less in number than those of two-dimensional ones,especially for multi-field coupling media exhibiting a certain kind of material anisotropy.An exact3Dthermoelastic solution has been reported for a uniformly heated penny-shaped crack in an infinite magnetoelectric space,with impermeable electromagnetic conditions assumed on the crack faces.Exact 3Dsolutions for the penny-shaped crack subjected to uniform or point temperature load are further presented here when the crack faces are electrically and magnetically permeable.The solutions,obtained by the potential theory method,are exact in the sense that all field variables are explicitly derived and expressed in terms of elementary functions.Along with the previously reported solution,the limits or bounds of the stress intensity factor at the crack-tip for a practical crack can be identified.展开更多
This paper discusses how American English reflects American national character. It emphasizes that language plays a crucial role in conveying national character. Then it analyzes the typical cases selected from many a...This paper discusses how American English reflects American national character. It emphasizes that language plays a crucial role in conveying national character. Then it analyzes the typical cases selected from many aspects of American life, including lexicons, slangs, proverbs, slogans, quotations, advertising and news English. From these familiar cases, we can see American English reveals that Americans love liberty and equality, pioneering and inventive traits, and worship materialism and money. In the end, the paper concludes that language is the best tool to recognize national culture, especially national character, which forms in the course of the development of a nation. There is no doubt that national character enables us to understand the background of language and master a language better.展开更多
The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvatu...The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.展开更多
By transforming the geodesic equation of the Schwarzschild solution of the Einstein’s equation of gravity field to flat space-time for description, the revised Newtonian formula of gravity is obtained. The formula ca...By transforming the geodesic equation of the Schwarzschild solution of the Einstein’s equation of gravity field to flat space-time for description, the revised Newtonian formula of gravity is obtained. The formula can also describe the motion of object with mass in gravity field such as the perihelion precession of the Mercury. The space-time singularity in the Einstein’s theory of gravity becomes the original point r = 0 in the Newtonian formula of gravity. The singularity problem of gravity in curved space-time is eliminated thoroughly. When the formula is used to describe the expansive universe, the revised Friedmann equation of cosmology is obtained. Based on it, the high red-shift of Ia supernova can be explained well. We do not need the hypotheses of the universe accelerating expansion and dark energy again. It is also unnecessary for us to assume that non-baryon dark material is 5 - 6 times more than normal baryon material in the universe if they really exist. The problem of the universal age can also be solved well. The theory of gravity returns to the traditional form of dynamic description and becomes normal one. The revised equation can be taken as the foundation of more rational cosmology.展开更多
The bimodulus material is a classical model to describe the elastic behavior of materials with tension-compression asymmetry.Due to the inherently nonlinear properties of bimodular materials,traditional iteration meth...The bimodulus material is a classical model to describe the elastic behavior of materials with tension-compression asymmetry.Due to the inherently nonlinear properties of bimodular materials,traditional iteration methods suffer from low convergence efficiency and poor adaptability for large-scale structures in engineering.In this paper,a novel 3D algorithm is established by complementing the three shear moduli of the constitutive equation in principal stress coordinates.In contrast to the existing 3D shear modulus constructed based on experience,in this paper the shear modulus is derived theoretically through a limit process.Then,a theoretically self-consistent complemented algorithm is established and implemented in ABAQUS via UMAT;its good stability and convergence efficiency are verified by using benchmark examples.Numerical analysis shows that the calculation error for bimodulus structures using the traditional linear elastic theory is large,which is not in line with reality.展开更多
文摘Ordnance material is the physical basis of ordnance equipment maintenance and support. With the increase of technology content and the enhancement of structural complexity of ordnance equipment,the traditional way of military self-independent support is unable to meet the troops' requirements. It has become an inevitable trend to integrate ordnance materials with the militarycivilian joint support. However, there is a problem demanding prompt solution,that is,to distinguish the categories of ordnance material that can be supported by civilian source. Based on the inherent properties of ordnance material, a method to classify ordnance materials military-civilian joint support categories based on multiple attribute decision was proposed. The effectiveness was validated through practical cases.
文摘The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.
文摘According to the structure feature of the governing equations of spaceaxisymmetric problem in transversely, isotropic piezoelectric material. using the methodof introducing potential .function one by. one, in this paper we obtain the so-calledgeneral solution of displacement and eleclric potential function denoied by uniquepoiential.function which satisfies specific partiality equations. As an applying exampleof the general solution, we solve problem of semi-infinile boodt. made of piezoelectricmaterial, on the surface of the semi-infinite body a concentrative .force is applied, andget the analytic .formulations of stress and electric displacement comiponenis. Thegeneral solution provided by this paper can be used as a tool to analyse the mechanical-electrical coupling behavior of piezoelecrtic material which conlains defects such ascavity inclusion. penny-shape crack. and so on. The result of the solved problem canbe used directly to analyse contact problems which take place between twopiezoelectric bodies or piezoelectric body. and elastic body .
文摘The status of material delivery of an automobile general assembly line is analyzed, and the technique to achieve the real-time tracking of assembly status information is proposed based on RFID( Radio Frequency Identification). Thus the consumption of line-side buffer is obtained dynamically, then the type and quantity of needed material are fed back to the subsystem of material handling; the algorithm for determining the best time departure time of delivery driver based on minimizing of total time penalty function is proposed. This approach makes the material amount of a single delivery trip maximized and improves the efficiency of delivery drivers significantly in the case of does not affect the assembly line normal throughput. Additionally, although this dynamic material handling method is developed for the automobile assembly plant, it should be pointed out that this method is also applicable to other mixed model assembly plants such as electronics, semiconductor and aerospace industry.
文摘Complicated changes occur inside the steel parts during quenching process. A three dimensional nonlinear mathematical model for quenching process has been established and the numerical simulation on temperature field, microstructure and stress field has been realized. The alternative technique for the formation of high-strength materials has been developed on the basis of intensification of heat transfer at phase transformations. The technology for the achievement of maximum compressive residual stresses on the hard surface is introduced. It has been shown that there is an optimal depth of hard layer providing the maximum compression stresses on the surface. It has also been established that in the surface hard layer additional strengthening (superstrengthening) of the material is observed. The generalized formula for the determination of the time of reaching maximum compressive stresses on the surface has been proposed.
基金The Project supported by the Doctoral Research Foundation of the State Education Commission of China
文摘In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory. The most general bending stretching couplings, the effect of eccentricity of stiffeners are considered. Then, for general stability of composite triangular grid stiffened conical shells without twist coupling terms, the approximate formulas are obtained for critical external pressure by using Galerkin's procedure. Numerical examples for a certain C/E composite conical shells with inside triangular grid stiffeners are calculated and the results are in good agreement with the experimental data. Finally, the influence of some parameters on critical external pressure is studied. The stability equations developed and the formulas for critical external pressure obtained in this paper should be very useful in the astronautical engineering design.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2B5B02002599)。
文摘To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pressurehull of submarines under uniform external hydrostatic pressure using bothfinite element analysis(FEA)and optimization tools.A comprehensive study about the optimum design of the pressure hull,to minimize the weight and increase the volume,to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor(B.F)is taken as an objective function with constraints of plate and frame yielding,general instability and deflection.The optimization process contains many design variables such as pressure-hull plate thickness,unsupported spacing,dimensions of long and ring beams andfinally the elliptical submersible pressure-hull diameters.The optimization process was conducted using ANSYS parametric design language(APDL)and ISIGHT.The Multi-Island Genetic Algorithm(G.A)is considered to conduct the optimization process.Additionally,parametric analysis is done on the pressure hull to examine the effect of different design variables on the pressure-hull design.As a result,the B.F of the proposed optimal model is reduced by an average of 31.78%compared with Reference Model(RM).Maximum von Mises stress is reduced by 27%as well.These results can be helpful for submarine pressure-hull designers.
文摘Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.
基金The project supported by the National Natural Science Foundation of China(No.19872060)
文摘An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solution of three-dimensional piezoelasticity and the four harmonics involved are represented by one complex potential.Previous results in potential theory are then utilized to obtain the exact solution that is expressed in terms of elementary functions.Comparison is made between the current results with those published and good agreement is obtained.
基金This work was supported by the National Natural Sci- ence Foundation of China (11321202) and the Specialized Research Fund for the Doctoral Program of Higher Educa- tion (2013010 1110120).
文摘Exact solutions of three-dimensional(3D)crack problems are much less in number than those of two-dimensional ones,especially for multi-field coupling media exhibiting a certain kind of material anisotropy.An exact3Dthermoelastic solution has been reported for a uniformly heated penny-shaped crack in an infinite magnetoelectric space,with impermeable electromagnetic conditions assumed on the crack faces.Exact 3Dsolutions for the penny-shaped crack subjected to uniform or point temperature load are further presented here when the crack faces are electrically and magnetically permeable.The solutions,obtained by the potential theory method,are exact in the sense that all field variables are explicitly derived and expressed in terms of elementary functions.Along with the previously reported solution,the limits or bounds of the stress intensity factor at the crack-tip for a practical crack can be identified.
文摘This paper discusses how American English reflects American national character. It emphasizes that language plays a crucial role in conveying national character. Then it analyzes the typical cases selected from many aspects of American life, including lexicons, slangs, proverbs, slogans, quotations, advertising and news English. From these familiar cases, we can see American English reveals that Americans love liberty and equality, pioneering and inventive traits, and worship materialism and money. In the end, the paper concludes that language is the best tool to recognize national culture, especially national character, which forms in the course of the development of a nation. There is no doubt that national character enables us to understand the background of language and master a language better.
文摘The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.
文摘By transforming the geodesic equation of the Schwarzschild solution of the Einstein’s equation of gravity field to flat space-time for description, the revised Newtonian formula of gravity is obtained. The formula can also describe the motion of object with mass in gravity field such as the perihelion precession of the Mercury. The space-time singularity in the Einstein’s theory of gravity becomes the original point r = 0 in the Newtonian formula of gravity. The singularity problem of gravity in curved space-time is eliminated thoroughly. When the formula is used to describe the expansive universe, the revised Friedmann equation of cosmology is obtained. Based on it, the high red-shift of Ia supernova can be explained well. We do not need the hypotheses of the universe accelerating expansion and dark energy again. It is also unnecessary for us to assume that non-baryon dark material is 5 - 6 times more than normal baryon material in the universe if they really exist. The problem of the universal age can also be solved well. The theory of gravity returns to the traditional form of dynamic description and becomes normal one. The revised equation can be taken as the foundation of more rational cosmology.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFB4602000)Liaoning Open Competition Science and Technology Major Project (Grant No.2022JH1/10400043)+1 种基金the National Natural Science Foundation of China (Grant No.12302184)Shanghai Pujiang Talent Program (Grant No.22PJ1413800).
基金the National Natural Science Foundation of China(Grant 51908071)Scientific Research Project of Education Department of Hunan Province(Grant 18C0194)Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport,Changsha University of Science&Technology(Grant kfi 170303).
文摘The bimodulus material is a classical model to describe the elastic behavior of materials with tension-compression asymmetry.Due to the inherently nonlinear properties of bimodular materials,traditional iteration methods suffer from low convergence efficiency and poor adaptability for large-scale structures in engineering.In this paper,a novel 3D algorithm is established by complementing the three shear moduli of the constitutive equation in principal stress coordinates.In contrast to the existing 3D shear modulus constructed based on experience,in this paper the shear modulus is derived theoretically through a limit process.Then,a theoretically self-consistent complemented algorithm is established and implemented in ABAQUS via UMAT;its good stability and convergence efficiency are verified by using benchmark examples.Numerical analysis shows that the calculation error for bimodulus structures using the traditional linear elastic theory is large,which is not in line with reality.