This paper presents a new implementation of a millimeter-wave heterodyne receiver based on six-port technology. The six-port model is implemented in Advanced Design System (ADS) using S-parameter measurements for re...This paper presents a new implementation of a millimeter-wave heterodyne receiver based on six-port technology. The six-port model is implemented in Advanced Design System (ADS) using S-parameter measurements for realistic advanced simulation of a short-range 60 GHz wireless link. Millimeter-wave frequency conversion is performed using a six-port down-converter. The second frequency conversion is performed using conventional means because of low IF. A comparison between the proposed receiver and a conventional balanced millimeter-wave mixer shows that the proposed receiver improves conversion loss and I/Q phase stability over the local oscillator (LO) and RF power ranges. The results of demodulating a V-band quadrature phase-shift keying (QPSK) signal at a high data rate of 100 Mb/s-1 Gb/s are discussed. The results of a bit error rate (BER) and error vector magnitude (EVM) analysis prove that the proposed architecture can be successfully used for wireless link transmission up to 10 m.展开更多
A broadband T/R frond-end of active holographic imaging system is presented. Compact autodyne mode circuit structure front-end is adopted to achieve higher signal to noise ratio and higher reliability, which is benefi...A broadband T/R frond-end of active holographic imaging system is presented. Compact autodyne mode circuit structure front-end is adopted to achieve higher signal to noise ratio and higher reliability, which is beneficial to the after-end imagining. The factors that influence the dynamic range and the transverse resolution ratio of holographic imaging system have been analyzed. Wide-band oscillator, wide-band low noise amplifier and the tapered slot antennas are implemented to meet the requirements of the holographic imagining system. According to the measured results, the output power is uniform in the broadband working frequency. The sub-harmonic suppression is better than 25 dBc from the frequency of 28 GHz to 33 GHz. The isolation between antennas channel is greater than 20 dB. The experimental result shows that the performance of the front-end is good enough to meet the needs of active millimeter-wave holographic imaging system.展开更多
This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large...This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large parasitical capacitor of CMOS photo-detectors,a regulated-cascode structure and noise optimization are used in the design of the transimpedance amplifier. The experimental results indicate that, with a parasitical capacitance of 2pF,a single channel is able to work at bite rates of up to 2.5Gb/s,and a clear eye diagram is obtained with a 0. 8mVpp input. Furthermore, an isolation structure combined with a p^+ guard.ring (PGR), an n^+ guard-ring (NGR),and a deep-n-well (DNW) for parallel amplifier is also presented. Taking this combined structure, the crosstalk and the substrate noise coupling have been effectively reduced. Compared with the isolation of PGR or PGR + NGR,the measured results show that the isolation degree of this structure is improved by 29.2 and 8. ldB at 1GHz,and by 8. 1 and 2. 5dB at 2GHz,respectively. With a 1.8V supply,each channel of the front-end amplifier consumes a DC power of 85mW,and the total power consumption of 12 channels is about 1W.展开更多
This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by t...This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by the noise canceling technique while the bandwidth is enhanced by gate inductive peaking technique. Measurement results show that, while the input frequency ranges from 100 MHz to 2.9 GHz, the proposed reconfigurable RF front-end achieves a controllable voltage conversion gain(VCG) from 18 dB to 39 dB. The measured maximum input third intercept point(IIP3) is-4.9 dBm and the minimum noise figure(NF) is 4.6 dB. The consumed current ranges from 16 mA to 26.5 mA from a 1.8 V supply voltage. The chip occupies an area of 1.17 mm^2 including pads.展开更多
The several gigabit rate and license-free spectrum resources of 7 GHz bandwidth can be provided by the 60 GHz short-range communication technology, therefore it becomes one of the most promising alternative technologi...The several gigabit rate and license-free spectrum resources of 7 GHz bandwidth can be provided by the 60 GHz short-range communication technology, therefore it becomes one of the most promising alternative technologies in the wireless communication. In this paper, the millimeter wave propagation characteristics in the complex office environment are studied by the SBR/Image method. Firstly, under the complex office environment, the propagation characteristics including received power, the arrival angle and the probability distribution of the arrival angle are studied without regard roughness and oxygen absorption loss. Then, the RMS delay spreads in 60 GHz, 2.4 GHz and 5 GHz wireless LAN signals are simulated and compared.展开更多
文摘This paper presents a new implementation of a millimeter-wave heterodyne receiver based on six-port technology. The six-port model is implemented in Advanced Design System (ADS) using S-parameter measurements for realistic advanced simulation of a short-range 60 GHz wireless link. Millimeter-wave frequency conversion is performed using a six-port down-converter. The second frequency conversion is performed using conventional means because of low IF. A comparison between the proposed receiver and a conventional balanced millimeter-wave mixer shows that the proposed receiver improves conversion loss and I/Q phase stability over the local oscillator (LO) and RF power ranges. The results of demodulating a V-band quadrature phase-shift keying (QPSK) signal at a high data rate of 100 Mb/s-1 Gb/s are discussed. The results of a bit error rate (BER) and error vector magnitude (EVM) analysis prove that the proposed architecture can be successfully used for wireless link transmission up to 10 m.
文摘A broadband T/R frond-end of active holographic imaging system is presented. Compact autodyne mode circuit structure front-end is adopted to achieve higher signal to noise ratio and higher reliability, which is beneficial to the after-end imagining. The factors that influence the dynamic range and the transverse resolution ratio of holographic imaging system have been analyzed. Wide-band oscillator, wide-band low noise amplifier and the tapered slot antennas are implemented to meet the requirements of the holographic imagining system. According to the measured results, the output power is uniform in the broadband working frequency. The sub-harmonic suppression is better than 25 dBc from the frequency of 28 GHz to 33 GHz. The isolation between antennas channel is greater than 20 dB. The experimental result shows that the performance of the front-end is good enough to meet the needs of active millimeter-wave holographic imaging system.
文摘This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large parasitical capacitor of CMOS photo-detectors,a regulated-cascode structure and noise optimization are used in the design of the transimpedance amplifier. The experimental results indicate that, with a parasitical capacitance of 2pF,a single channel is able to work at bite rates of up to 2.5Gb/s,and a clear eye diagram is obtained with a 0. 8mVpp input. Furthermore, an isolation structure combined with a p^+ guard.ring (PGR), an n^+ guard-ring (NGR),and a deep-n-well (DNW) for parallel amplifier is also presented. Taking this combined structure, the crosstalk and the substrate noise coupling have been effectively reduced. Compared with the isolation of PGR or PGR + NGR,the measured results show that the isolation degree of this structure is improved by 29.2 and 8. ldB at 1GHz,and by 8. 1 and 2. 5dB at 2GHz,respectively. With a 1.8V supply,each channel of the front-end amplifier consumes a DC power of 85mW,and the total power consumption of 12 channels is about 1W.
基金Supported by the National Nature Science Foundation of China(No.61674037)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the National Power Grid Corp Science and Technology Project(No.SGTYHT/16-JS-198)the State Grid Nanjing Power Supply Company Project(No.1701052)
文摘This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by the noise canceling technique while the bandwidth is enhanced by gate inductive peaking technique. Measurement results show that, while the input frequency ranges from 100 MHz to 2.9 GHz, the proposed reconfigurable RF front-end achieves a controllable voltage conversion gain(VCG) from 18 dB to 39 dB. The measured maximum input third intercept point(IIP3) is-4.9 dBm and the minimum noise figure(NF) is 4.6 dB. The consumed current ranges from 16 mA to 26.5 mA from a 1.8 V supply voltage. The chip occupies an area of 1.17 mm^2 including pads.
文摘The several gigabit rate and license-free spectrum resources of 7 GHz bandwidth can be provided by the 60 GHz short-range communication technology, therefore it becomes one of the most promising alternative technologies in the wireless communication. In this paper, the millimeter wave propagation characteristics in the complex office environment are studied by the SBR/Image method. Firstly, under the complex office environment, the propagation characteristics including received power, the arrival angle and the probability distribution of the arrival angle are studied without regard roughness and oxygen absorption loss. Then, the RMS delay spreads in 60 GHz, 2.4 GHz and 5 GHz wireless LAN signals are simulated and compared.