In this paper, the challenges with and motivations for developing millimeter wave and terahertz communications are described. A high-bye candidate architecture is presented, and use cases highlighting the potential ap...In this paper, the challenges with and motivations for developing millimeter wave and terahertz communications are described. A high-bye candidate architecture is presented, and use cases highlighting the potential applicability of high-frequency links are discussed. Mobility challenges at these higher frequencies are also discussed. Difficulties that arise as a result of high carrier frequencies and higher path loss can be overcome by practical, higher-gain antennas that have the added benefit of reducing intercell interference. Simulation methodology and results are given. The results show that millimeter wave coverage is possible in large, outdoor spaces, and only a reasonable number of base stations are needed. Network throughput can exceed 25 Gbit/s, and cell-edge user throuqhput can reach aDoroximatelv 100 Mbit/s.展开更多
The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living orga...The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.展开更多
In this paper the modelling, analysis and optimization of millimeter wave oscillatorsare investigated by using the a frequency-domain harmonic balance technique (FDHB), where theexternal-circuit impedances looking out...In this paper the modelling, analysis and optimization of millimeter wave oscillatorsare investigated by using the a frequency-domain harmonic balance technique (FDHB), where theexternal-circuit impedances looking outside from the active device are calculated with a combinedtechnique of modes expansion, Galerkin, and collocation methods. The optimization results arein agreement with the experimental ones, which show the reliability of the presented model andoptimization.展开更多
An advanced conceptual design of a high-bit-rate triple product acousto-optical processor is presented that can be applied in a number of astrophysical problems. We briefly describe the Large Millimeter Telescope as o...An advanced conceptual design of a high-bit-rate triple product acousto-optical processor is presented that can be applied in a number of astrophysical problems. We briefly describe the Large Millimeter Telescope as one of the potential observational infrastructures where the acousto-optical spectrometer can be successfully used. A summary on the study of molecular gas in relatively old (age > 10 Myr) disks around main sequence stars is provided. We have identified this as one of the science cases in which the proposed processor can have a big impact. Then we put forward triple product acousto-optical processor is able to realize algorithm of the space-and-time integrating, which is desirable for a wideband spectrum analysis of radio-wave signals with an improved resolution providing the resolution power of about 105 - 106. It includes 1D-acousto-optic cells as the input devices for a 2D-optical data processing. The importance of this algorithm is based on exploiting the chirp Z-transform technique providing a 2D-Fourier transform of the input signals. The system produces the folded spectrum, accumulating advantages of both space and time integrating. Its frequency bandwidth is practically equal to the bandwidth of transducers inherent in acousto-optical cells. Then, similar processor is able to provide really high frequency resolution, which is practically equal to the reciprocal of the CCD-matrix photo-detector integration time. Here, the current state of developing the triple product acousto-optical processor in frames of the astrophysical instrumentation is shortly discussed.展开更多
Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IM- PATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried ...Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IM- PATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A compara- tive study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.展开更多
An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both mill...An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both millimetre-wave(mm-wave) and terahertz(THz) frequencies. A rigorous large-signal(L-S) simulation based on the non-sinusoidal voltage excitation(NSVE) model developed earlier by the authors is used in this study. At first,a simulation study based on avalanche response time reveals that the upper cut-off frequency for DDR diamond IMPATTs is 1.5 THz, while the same for conventional DDR Si IMPATTs is much smaller, i.e. 0.5 THz. The L-S simulationresultsshowthattheDDRdiamondIMPATTdevicedeliversapeakRFpowerof7.79Wwithan18.17%conversion efficiency at 94 GHz; while at 1.5 THz, the peak power output and conversion efficiency decrease to6.19mWand8.17%respectively,taking50%voltagemodulation.AcomparativestudyofDDRIMPATTsbasedon diamond and Si shows that the former excels over the later as regards high frequency and high power performance at both mm-wave and THz frequency bands. The effect of band to band tunneling on the L-S properties of DDR diamond and Si IMPATTs has also been studied at different mm-wave and THz frequencies.展开更多
The authors have carried out the large-signal characterization ofsilicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simula...The authors have carried out the large-signal characterization ofsilicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simulation method developed by the authors based on non-sinusoidal voltage excitation. The effect of band-to-band tunneling as well as parasitic series resistance on the large-signal properties of DDR Si IMPATTs have also been studied at different mm-wave and THz frequencies. Large-signal simulation results show that DDR Si IMPATT is capable of delivering peak RF power of 633.69 mW with 7.95% conversion efficiency at 94 GHz for 50% voltage modulation, whereas peak RF power output and efficiency fall to 81.08 mW and 2.01% respectively at 0.5 THz for same voltage modulation. The simulation results are compared with the experimental results and are found to be in close agreement.展开更多
The nonreciprocal circular dichroism and Faraday rotation effect for terahertz(THz) waves in longitudinally magnetized InSb were investigated by theoretical and experimental studies in the THz regime, which indicated ...The nonreciprocal circular dichroism and Faraday rotation effect for terahertz(THz) waves in longitudinally magnetized InSb were investigated by theoretical and experimental studies in the THz regime, which indicated its ability for a THz circularly polarized isolator, THz circular polarizer, tunable polarization converter, and polarization modulator by manipulation of different magnetic fields. Furthermore, we demonstrated the InSb plasmonics based on its magneto-optical effects combined with artificial microstructure. We found the magnetooptical enhancement mechanisms in this magneto-plasmonic structure, achieving broadband near-perfect orthogonal linear polarization conversion modulated by the weak magnetic field in an experiment with an extinction ratio of 33 dB. Moreover, the magneto-optical modulation with an amplitude modulation depth of 95.8% can be achieved by this device under a weak magnetic field of 150 mT. InSb and its magneto-plasmonic device have broad potential for a THz isolator, magneto-optical modulator, and polarization convertor in THz application systems.展开更多
The optical carrier suppression in optical quadruple frequency modulation by cascaded external modulators is investigated theoretically and experimentally. Theoretical analysis demonstrates that the optical carrier su...The optical carrier suppression in optical quadruple frequency modulation by cascaded external modulators is investigated theoretically and experimentally. Theoretical analysis demonstrates that the optical carrier suppression ratio is related with not only the initial phase difference of electrical signals applied on the two modulators, but also the optical phase shift between the two modulators. The maximum suppression ratio can be achieved when the total phase difference is equal to nπ+π/2 (n = 1, 2,…), which is verified by experiments. By properly controlling the total phase shift, 40-GHz millimeter-wave is generated by using a 10-GHz radio frequency (RF) source and the modulators.展开更多
A novel scheme is proposed to transform an ultra-short optical pulse to a millimeter-wave frequencymodulated pulse by using the cascaded all-pass cavities (APCs). The envelope waveform of the generated pulse train i...A novel scheme is proposed to transform an ultra-short optical pulse to a millimeter-wave frequencymodulated pulse by using the cascaded all-pass cavities (APCs). The envelope waveform of the generated pulse train is calculated, showing effective improvement by APC cascading. The extinction ratio is analyzed with different input pulses, different cavity reflectivities, and different cascading numbers. It is shown that the cascading does not introduce much effect on the extinction ratio. Two designs by using Gires-Tournois cavity and waveguide ring resonators are proposed to realize the cascaded APC.展开更多
The main characteristics of millimeter-wave(MM-wave)image detector were simulated by means of accurate numerical modeling of thermophysical processes in a metamaterial MM-to-IR converter.The converter represents a mul...The main characteristics of millimeter-wave(MM-wave)image detector were simulated by means of accurate numerical modeling of thermophysical processes in a metamaterial MM-to-IR converter.The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer.The absorber consists of a dielectric self-supporting film that is metallized from both sides.A micropattern is fabricated from one side.Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer.IR emission is detected by IR camera.In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software.The simulation results are in a good agreement with experimental results that validates the model.The simulation shows that the real-time operation is provided for the converter thickness less than 3µm and time response can be improved by decreasing of the converter thickness.The energy conversion efficiency of MM waves into IR radiation is over 80%.The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range.The blooming effect and ways of its reducing are also discussed.The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters.展开更多
文摘In this paper, the challenges with and motivations for developing millimeter wave and terahertz communications are described. A high-bye candidate architecture is presented, and use cases highlighting the potential applicability of high-frequency links are discussed. Mobility challenges at these higher frequencies are also discussed. Difficulties that arise as a result of high carrier frequencies and higher path loss can be overcome by practical, higher-gain antennas that have the added benefit of reducing intercell interference. Simulation methodology and results are given. The results show that millimeter wave coverage is possible in large, outdoor spaces, and only a reasonable number of base stations are needed. Network throughput can exceed 25 Gbit/s, and cell-edge user throuqhput can reach aDoroximatelv 100 Mbit/s.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021M2E8A1038938,No.NRF-2021R1F1A1048374,and No.NRF-2016R1A3B1908336)supported by a grant of the Korea Institute of Radiological and Medical Sciences(KIRAMS),funded by the Ministry of Science and ICT(MSIT),Republic of Korea(No.50051—2021,No.50623—2021)。
文摘The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.
文摘In this paper the modelling, analysis and optimization of millimeter wave oscillatorsare investigated by using the a frequency-domain harmonic balance technique (FDHB), where theexternal-circuit impedances looking outside from the active device are calculated with a combinedtechnique of modes expansion, Galerkin, and collocation methods. The optimization results arein agreement with the experimental ones, which show the reliability of the presented model andoptimization.
文摘An advanced conceptual design of a high-bit-rate triple product acousto-optical processor is presented that can be applied in a number of astrophysical problems. We briefly describe the Large Millimeter Telescope as one of the potential observational infrastructures where the acousto-optical spectrometer can be successfully used. A summary on the study of molecular gas in relatively old (age > 10 Myr) disks around main sequence stars is provided. We have identified this as one of the science cases in which the proposed processor can have a big impact. Then we put forward triple product acousto-optical processor is able to realize algorithm of the space-and-time integrating, which is desirable for a wideband spectrum analysis of radio-wave signals with an improved resolution providing the resolution power of about 105 - 106. It includes 1D-acousto-optic cells as the input devices for a 2D-optical data processing. The importance of this algorithm is based on exploiting the chirp Z-transform technique providing a 2D-Fourier transform of the input signals. The system produces the folded spectrum, accumulating advantages of both space and time integrating. Its frequency bandwidth is practically equal to the bandwidth of transducers inherent in acousto-optical cells. Then, similar processor is able to provide really high frequency resolution, which is practically equal to the reciprocal of the CCD-matrix photo-detector integration time. Here, the current state of developing the triple product acousto-optical processor in frames of the astrophysical instrumentation is shortly discussed.
文摘Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IM- PATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A compara- tive study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.
文摘An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both millimetre-wave(mm-wave) and terahertz(THz) frequencies. A rigorous large-signal(L-S) simulation based on the non-sinusoidal voltage excitation(NSVE) model developed earlier by the authors is used in this study. At first,a simulation study based on avalanche response time reveals that the upper cut-off frequency for DDR diamond IMPATTs is 1.5 THz, while the same for conventional DDR Si IMPATTs is much smaller, i.e. 0.5 THz. The L-S simulationresultsshowthattheDDRdiamondIMPATTdevicedeliversapeakRFpowerof7.79Wwithan18.17%conversion efficiency at 94 GHz; while at 1.5 THz, the peak power output and conversion efficiency decrease to6.19mWand8.17%respectively,taking50%voltagemodulation.AcomparativestudyofDDRIMPATTsbasedon diamond and Si shows that the former excels over the later as regards high frequency and high power performance at both mm-wave and THz frequency bands. The effect of band to band tunneling on the L-S properties of DDR diamond and Si IMPATTs has also been studied at different mm-wave and THz frequencies.
文摘The authors have carried out the large-signal characterization ofsilicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simulation method developed by the authors based on non-sinusoidal voltage excitation. The effect of band-to-band tunneling as well as parasitic series resistance on the large-signal properties of DDR Si IMPATTs have also been studied at different mm-wave and THz frequencies. Large-signal simulation results show that DDR Si IMPATT is capable of delivering peak RF power of 633.69 mW with 7.95% conversion efficiency at 94 GHz for 50% voltage modulation, whereas peak RF power output and efficiency fall to 81.08 mW and 2.01% respectively at 0.5 THz for same voltage modulation. The simulation results are compared with the experimental results and are found to be in close agreement.
基金National Key Research and Development Program of China(2016YFC0101002,2017YFA0701000)National Natural Science Foundation of China(NSFC)(61671491,61831012)Young Elite Scientists Sponsorship Program by Tianjin(TJSQNTJ-2017-12)
文摘The nonreciprocal circular dichroism and Faraday rotation effect for terahertz(THz) waves in longitudinally magnetized InSb were investigated by theoretical and experimental studies in the THz regime, which indicated its ability for a THz circularly polarized isolator, THz circular polarizer, tunable polarization converter, and polarization modulator by manipulation of different magnetic fields. Furthermore, we demonstrated the InSb plasmonics based on its magneto-optical effects combined with artificial microstructure. We found the magnetooptical enhancement mechanisms in this magneto-plasmonic structure, achieving broadband near-perfect orthogonal linear polarization conversion modulated by the weak magnetic field in an experiment with an extinction ratio of 33 dB. Moreover, the magneto-optical modulation with an amplitude modulation depth of 95.8% can be achieved by this device under a weak magnetic field of 150 mT. InSb and its magneto-plasmonic device have broad potential for a THz isolator, magneto-optical modulator, and polarization convertor in THz application systems.
基金supported by the National "973" Program of China under Grant No. 2006CB302806
文摘The optical carrier suppression in optical quadruple frequency modulation by cascaded external modulators is investigated theoretically and experimentally. Theoretical analysis demonstrates that the optical carrier suppression ratio is related with not only the initial phase difference of electrical signals applied on the two modulators, but also the optical phase shift between the two modulators. The maximum suppression ratio can be achieved when the total phase difference is equal to nπ+π/2 (n = 1, 2,…), which is verified by experiments. By properly controlling the total phase shift, 40-GHz millimeter-wave is generated by using a 10-GHz radio frequency (RF) source and the modulators.
基金supported by the National Natural Science Foundation of China under Grant No.60871067
文摘A novel scheme is proposed to transform an ultra-short optical pulse to a millimeter-wave frequencymodulated pulse by using the cascaded all-pass cavities (APCs). The envelope waveform of the generated pulse train is calculated, showing effective improvement by APC cascading. The extinction ratio is analyzed with different input pulses, different cavity reflectivities, and different cascading numbers. It is shown that the cascading does not introduce much effect on the extinction ratio. Two designs by using Gires-Tournois cavity and waveguide ring resonators are proposed to realize the cascaded APC.
文摘The main characteristics of millimeter-wave(MM-wave)image detector were simulated by means of accurate numerical modeling of thermophysical processes in a metamaterial MM-to-IR converter.The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer.The absorber consists of a dielectric self-supporting film that is metallized from both sides.A micropattern is fabricated from one side.Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer.IR emission is detected by IR camera.In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software.The simulation results are in a good agreement with experimental results that validates the model.The simulation shows that the real-time operation is provided for the converter thickness less than 3µm and time response can be improved by decreasing of the converter thickness.The energy conversion efficiency of MM waves into IR radiation is over 80%.The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range.The blooming effect and ways of its reducing are also discussed.The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters.