Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co...Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.展开更多
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar...Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system.展开更多
This work presents,design and specific absorption rate(SAR)analysis of a 37GHz antenna,for 5th Generation(5G)applications.The proposed antenna comprises of 4-elements of rectangular patch and an even distribution.The ...This work presents,design and specific absorption rate(SAR)analysis of a 37GHz antenna,for 5th Generation(5G)applications.The proposed antenna comprises of 4-elements of rectangular patch and an even distribution.The radiating element is composed of copper material supported by Rogers RT5880 substrate of thickness,0.254 mm,dielectric constant(εr),2.2,and loss tangent,0.0009.The 4-elements array antenna is compact in size with a dimension of 8mm×20mm in length and width.The radiating patch is excited with a 50 ohms connector i.e.,K-type.The antenna resonates in the frequency band of 37 GHz,that covers the 5G applications.The antenna behavior is studied both in free space and in the proximity of the human body.Three models of the human body,i.e.,belly,hand,and head(contain skin,fat,muscles,and bone)are considered for on-body simulations.At resonant frequency,the antenna gives a boresight gain of 11.6 dB.The antenna radiates efficiently with a radiated efficiency of more than 90%.Also,it is observed that the antenna detunes to the lowest in the proximity of the human body,but still a good impedance matching is achieved considering the−10 dB criteria.Moreover,SAR is also being presented.The safe limit of 2 W/kg for any 10 g of biological tissue,specified by the European International Electro Technical Commission(IEC)has been considered.The calculated values of SAR for human body models,i.e.,belly,hand and head are 1.82,1.81 and 1.09 W/kg,respectively.The SAR values are less than the international recommendations for the three models.Furthermore,the simulated and measured results of the antenna are in close agreement,which makes it,a potential candidate for the fifth-generation smart phones and other handheld devices.展开更多
For 5G new radio(NR),there are two frequency bands:Frequency Range 1(FR‐1)(low frequency)and Frequency Range 2(FR‐2)(millimeter‐wave frequency).Millimeter‐wave has been officially utilized in mobile applications.T...For 5G new radio(NR),there are two frequency bands:Frequency Range 1(FR‐1)(low frequency)and Frequency Range 2(FR‐2)(millimeter‐wave frequency).Millimeter‐wave has been officially utilized in mobile applications.The wide bandwidth is the key for the millimeter-wave band.However,higher loss has become the major challenge for the wide use of this frequency range.Antenna array and beamforming technologies have been introduced to resolve the path loss and coverage problems.The key design considerations of the beamforming antenna array are low loss,compact system and small size.Antenna-in-package(AiP)has become the most attractive technology for millimeter-wave front-end system.For the design of AiP,many parameters such as RF transition,material and heat need to be considered and designed properly.The Over‐the‐Air(OTA)testing technology is also very critical for AiP mass production.In this paper,the detail of AiP design and new OTA testing technology are discussed and demonstrated.展开更多
This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good resul...This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.展开更多
许多生物标志物被国内外学者发现并应用于临床,而选择一种简单且容易测定的生物标志物用来评估并预测疾病的风险则显得尤为重要。血浆动脉粥样硬化指数(Atherogenic Index of Plasma,AIP)是一种创新性新型生物标志物,其值是由甘油三酯...许多生物标志物被国内外学者发现并应用于临床,而选择一种简单且容易测定的生物标志物用来评估并预测疾病的风险则显得尤为重要。血浆动脉粥样硬化指数(Atherogenic Index of Plasma,AIP)是一种创新性新型生物标志物,其值是由甘油三酯与高密度脂蛋白-胆固醇的摩尔浓度对数转换比率组成。本综述通过对AIP作基本概括及其脂代谢的相关机制,了解到AIP作为一种新型综合生物标志物,对2型糖尿病及其并发症以及对相关疾病比如动脉粥样硬化性心血管疾病、非酒精性脂肪性肝病、代谢综合征等疾病具有很好的预测及风险评估能力。本文重点分析AIP与2型糖尿病、2型糖尿病大血管病变以及肾脏病变之间的关联,探索AIP作为新型生物标志物的研究潜力,以期为上述疾病的预防和治疗提供一种诊疗思路和研究方向。展开更多
为探讨血浆促动脉硬化指数(AIP)在铁路职工健康维护工作中的应用,收集2023年某单位623名职工健康管理信息,以China-PAR(中国动脉粥样硬化性心血管疾病风险预测项目)心血管病终生发病风险评估等级为因变量,以AIP与职工健康维护等级为自...为探讨血浆促动脉硬化指数(AIP)在铁路职工健康维护工作中的应用,收集2023年某单位623名职工健康管理信息,以China-PAR(中国动脉粥样硬化性心血管疾病风险预测项目)心血管病终生发病风险评估等级为因变量,以AIP与职工健康维护等级为自变量建立多元线性回归风险预测模型,并绘制受试者工作特征(Receiver Operating Characteristic,ROC)曲线,通过计算曲线下面积(Area under the Curve,AUC)进一步验证综合指标的预测性能。相关性分析中,职工健康维护等级相关系数高于AIP相关系数;职工健康维护等级、AIP的标准化系数分别为0.333和0.225,提示职工健康维护等级与心脑血管病终生发病风险的关联等级更高。多元线性回归模型预测值的AUC面积显著大于AIP、职工健康维护等级单项指标(P<0.05),但2个单项指标的差异无统计学意义(Z=-0.784,P=0.433)。说明AIP、职工健康维护等级二者联合风险预测模型对个体心脑血管疾病发病风险具备较好预测效果。展开更多
The implementation of broadband monolithic baluns based on CMOS technology is investigated. The configuration and parameterized layout are analyzed. Then,a wide-band lumped element equivalent circuit model accounting ...The implementation of broadband monolithic baluns based on CMOS technology is investigated. The configuration and parameterized layout are analyzed. Then,a wide-band lumped element equivalent circuit model accounting for all necessary physical effects is proposed and model parameters are extracted, with high accuracy in a broadband frequency range ,via combination of physical formula and fitting optimization. Two baluns were implemented with TSMC's one-poly eight-metal (1P8M) 0.13μm mixed-signal (MS)/RF CMOS process. The S-parameters of these two baluns were measured using a vector network analyzer. The measured results agree well with the modeled parameters up to millimeter-wave frequencies.展开更多
Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher da...Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
This paper presents an overview of a new very high throughput millimeterwave WLAN system operating at 45 GHz band. We begin by reviewing standards process of IEEE 802.11aj(45GHz). Then the frequency spectrum allocatio...This paper presents an overview of a new very high throughput millimeterwave WLAN system operating at 45 GHz band. We begin by reviewing standards process of IEEE 802.11aj(45GHz). Then the frequency spectrum allocation at 45 GHz band is introduced. Next, the channel measurement and mod-eling is given. Specifically, the millimeter-wave MIMO for physical layer enhancement is given in detail.展开更多
This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3,...This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3, the cells were induced by β-mercaptoethanol (BME) in combination with MMW or BME alone. The expressions of nucleostemin (NS) and neuron-specific enolase (NSE) were detected by immunofluorescent staining and Western blotting respectively to identify the differentiation. The untreated BMSCs predominately expressed NS. After induced by BME and MMW, the BMSCs exhibited a dramatic decrease in NS expression and increase in NSE expression. The differentiation rate of the cells treated with BME and MMW in combination was significantly higher than that of the cells treated with BME alone (P〈0.05). It was concluded that MMW exposure enhanced the inducing effect of BME on the differentiation of BMSCs into cells with a neural phenotype.展开更多
The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireles...The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireless services,including the sub-6 GHz band.In this work,we briefly review several existing designs of millimeter-wave phased arrays for 5G applications,beginning with the low-profile antenna array designs that either are fixed beam or scan the beam only in one plane.We then move on to array systems that offer two-dimensional(2D)scan capability,which is highly desirable for a majority of 5G applications.Next,in the main body of the paper,we discuss two different strategies for designing scanning arrays,both of which circumvent the use of conventional phase shifters to achieve beam scanning.We note that it is highly desirable to search for alternatives to conventional phase shifters in the millimeter-wave range because legacy phase shifters are both lossy and costly;furthermore,alternatives such as active phase shifters,which include radio frequency amplifiers,are both expensive and power-hungry.Given this backdrop,we propose two different antenna systems with potential for the desired 2D scan performance in the millimeter-wave range.The first of these is a Luneburg lens,which is excited either by a 2D waveguide array or by a microstrip patch antenna array to realize 2D scan capability.Next,for second design,we turn to phased-array designs in which the conventional phase shifter is replaced by switchable PIN diodes or varactor diodes,inserted between radiating slots in a waveguide to provide the desired phase shifts for scanning.Finally,we discuss several approaches to enhance the gain of the array by modifying the conventional array configurations.We describe novel techniques for realizing both one-dimensional(1D)and 2D scans by using a reconfigurable metasurface type of panels.展开更多
Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely appl...Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.展开更多
基金supported by the National Natural Science Foundation of China(No.62171052 and No.61971054)the Fundamental Research Funds for the Central Universities(No.24820232023YQTD01).
文摘Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
基金supported by the National Natural Science Foundation of China under grant no.62272242.
文摘Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system.
文摘This work presents,design and specific absorption rate(SAR)analysis of a 37GHz antenna,for 5th Generation(5G)applications.The proposed antenna comprises of 4-elements of rectangular patch and an even distribution.The radiating element is composed of copper material supported by Rogers RT5880 substrate of thickness,0.254 mm,dielectric constant(εr),2.2,and loss tangent,0.0009.The 4-elements array antenna is compact in size with a dimension of 8mm×20mm in length and width.The radiating patch is excited with a 50 ohms connector i.e.,K-type.The antenna resonates in the frequency band of 37 GHz,that covers the 5G applications.The antenna behavior is studied both in free space and in the proximity of the human body.Three models of the human body,i.e.,belly,hand,and head(contain skin,fat,muscles,and bone)are considered for on-body simulations.At resonant frequency,the antenna gives a boresight gain of 11.6 dB.The antenna radiates efficiently with a radiated efficiency of more than 90%.Also,it is observed that the antenna detunes to the lowest in the proximity of the human body,but still a good impedance matching is achieved considering the−10 dB criteria.Moreover,SAR is also being presented.The safe limit of 2 W/kg for any 10 g of biological tissue,specified by the European International Electro Technical Commission(IEC)has been considered.The calculated values of SAR for human body models,i.e.,belly,hand and head are 1.82,1.81 and 1.09 W/kg,respectively.The SAR values are less than the international recommendations for the three models.Furthermore,the simulated and measured results of the antenna are in close agreement,which makes it,a potential candidate for the fifth-generation smart phones and other handheld devices.
文摘For 5G new radio(NR),there are two frequency bands:Frequency Range 1(FR‐1)(low frequency)and Frequency Range 2(FR‐2)(millimeter‐wave frequency).Millimeter‐wave has been officially utilized in mobile applications.The wide bandwidth is the key for the millimeter-wave band.However,higher loss has become the major challenge for the wide use of this frequency range.Antenna array and beamforming technologies have been introduced to resolve the path loss and coverage problems.The key design considerations of the beamforming antenna array are low loss,compact system and small size.Antenna-in-package(AiP)has become the most attractive technology for millimeter-wave front-end system.For the design of AiP,many parameters such as RF transition,material and heat need to be considered and designed properly.The Over‐the‐Air(OTA)testing technology is also very critical for AiP mass production.In this paper,the detail of AiP design and new OTA testing technology are discussed and demonstrated.
基金supported by the National Natural Science Foundation of China(62201510,62001091,61801435,61871080,61801435)the Initial Scientific Research Foundation of University of Science and Technology of China(Y030202059018051)+2 种基金Yangtze River Scholar Program,Sichuan Science and Technology Program(2019JDJQ0014)111 Project(B17008)Henan Provincial Department of Science and Technology Research Project(202102210315,212102210029,202102210-137).
文摘This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.
文摘许多生物标志物被国内外学者发现并应用于临床,而选择一种简单且容易测定的生物标志物用来评估并预测疾病的风险则显得尤为重要。血浆动脉粥样硬化指数(Atherogenic Index of Plasma,AIP)是一种创新性新型生物标志物,其值是由甘油三酯与高密度脂蛋白-胆固醇的摩尔浓度对数转换比率组成。本综述通过对AIP作基本概括及其脂代谢的相关机制,了解到AIP作为一种新型综合生物标志物,对2型糖尿病及其并发症以及对相关疾病比如动脉粥样硬化性心血管疾病、非酒精性脂肪性肝病、代谢综合征等疾病具有很好的预测及风险评估能力。本文重点分析AIP与2型糖尿病、2型糖尿病大血管病变以及肾脏病变之间的关联,探索AIP作为新型生物标志物的研究潜力,以期为上述疾病的预防和治疗提供一种诊疗思路和研究方向。
文摘为探讨血浆促动脉硬化指数(AIP)在铁路职工健康维护工作中的应用,收集2023年某单位623名职工健康管理信息,以China-PAR(中国动脉粥样硬化性心血管疾病风险预测项目)心血管病终生发病风险评估等级为因变量,以AIP与职工健康维护等级为自变量建立多元线性回归风险预测模型,并绘制受试者工作特征(Receiver Operating Characteristic,ROC)曲线,通过计算曲线下面积(Area under the Curve,AUC)进一步验证综合指标的预测性能。相关性分析中,职工健康维护等级相关系数高于AIP相关系数;职工健康维护等级、AIP的标准化系数分别为0.333和0.225,提示职工健康维护等级与心脑血管病终生发病风险的关联等级更高。多元线性回归模型预测值的AUC面积显著大于AIP、职工健康维护等级单项指标(P<0.05),但2个单项指标的差异无统计学意义(Z=-0.784,P=0.433)。说明AIP、职工健康维护等级二者联合风险预测模型对个体心脑血管疾病发病风险具备较好预测效果。
文摘The implementation of broadband monolithic baluns based on CMOS technology is investigated. The configuration and parameterized layout are analyzed. Then,a wide-band lumped element equivalent circuit model accounting for all necessary physical effects is proposed and model parameters are extracted, with high accuracy in a broadband frequency range ,via combination of physical formula and fitting optimization. Two baluns were implemented with TSMC's one-poly eight-metal (1P8M) 0.13μm mixed-signal (MS)/RF CMOS process. The S-parameters of these two baluns were measured using a vector network analyzer. The measured results agree well with the modeled parameters up to millimeter-wave frequencies.
文摘Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
基金supported in part by National Key Basic Research Program of China (973 Program) under Grant No. 2013CB329002National Natural Science Foundation of China under Grant No. 61132003the Natural Science Foundation of Jiangsu Province of China under Grants BK2011019 and BK20130631
文摘This paper presents an overview of a new very high throughput millimeterwave WLAN system operating at 45 GHz band. We begin by reviewing standards process of IEEE 802.11aj(45GHz). Then the frequency spectrum allocation at 45 GHz band is introduced. Next, the channel measurement and mod-eling is given. Specifically, the millimeter-wave MIMO for physical layer enhancement is given in detail.
文摘This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3, the cells were induced by β-mercaptoethanol (BME) in combination with MMW or BME alone. The expressions of nucleostemin (NS) and neuron-specific enolase (NSE) were detected by immunofluorescent staining and Western blotting respectively to identify the differentiation. The untreated BMSCs predominately expressed NS. After induced by BME and MMW, the BMSCs exhibited a dramatic decrease in NS expression and increase in NSE expression. The differentiation rate of the cells treated with BME and MMW in combination was significantly higher than that of the cells treated with BME alone (P〈0.05). It was concluded that MMW exposure enhanced the inducing effect of BME on the differentiation of BMSCs into cells with a neural phenotype.
文摘The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireless services,including the sub-6 GHz band.In this work,we briefly review several existing designs of millimeter-wave phased arrays for 5G applications,beginning with the low-profile antenna array designs that either are fixed beam or scan the beam only in one plane.We then move on to array systems that offer two-dimensional(2D)scan capability,which is highly desirable for a majority of 5G applications.Next,in the main body of the paper,we discuss two different strategies for designing scanning arrays,both of which circumvent the use of conventional phase shifters to achieve beam scanning.We note that it is highly desirable to search for alternatives to conventional phase shifters in the millimeter-wave range because legacy phase shifters are both lossy and costly;furthermore,alternatives such as active phase shifters,which include radio frequency amplifiers,are both expensive and power-hungry.Given this backdrop,we propose two different antenna systems with potential for the desired 2D scan performance in the millimeter-wave range.The first of these is a Luneburg lens,which is excited either by a 2D waveguide array or by a microstrip patch antenna array to realize 2D scan capability.Next,for second design,we turn to phased-array designs in which the conventional phase shifter is replaced by switchable PIN diodes or varactor diodes,inserted between radiating slots in a waveguide to provide the desired phase shifts for scanning.Finally,we discuss several approaches to enhance the gain of the array by modifying the conventional array configurations.We describe novel techniques for realizing both one-dimensional(1D)and 2D scans by using a reconfigurable metasurface type of panels.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1506605)Sichuan Provincial Department of Education Scientific research projects(Grant No.16ZB0211)Chengdu University of Information Technology research and development projects(Grant No.CRF201705)。
文摘Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.