Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Am...Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.展开更多
Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the th...Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the frequency range of 2.6-18GHz were studied, and a mathematical analysis was made using the electromagnetic theory. The experimental results indicate that the minimum reflectivity of the radar absorbing materials continuously decreases with the increase of the carbonyl iron volume fraction, and the absorption peak also moves towards the low frequency for the same thickness of the RAM. The minimum reflectivity of the 3.0 mm RAM is -21.7dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%. The reflectivity of the RAM is not in direct proportional to the thickness of the RAM, when the RAM has the same volume fraction of the carbonyl iron. The reflectivity of the RAM presents a regular trend at a given carbonyl iron volume fraction in the frequency range of 2.6-18 GHz. With the increase of the thickness, the maximum absorption peak moves towards low frequency band, the minimum reflectivity firstly decreases and then increases, and the absorption bandwidth for reflectivity〈-10 dB firstly increases and then decreases. The microwave absorption properties of the RAM are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air's characteristic impedance and the input impedance.展开更多
Nanostructured radar absorbing materials (RAMs) have received steadily growing interest because of their fascinating properties and various applications compared with the bulk or microsized counterparts. The increased...Nanostructured radar absorbing materials (RAMs) have received steadily growing interest because of their fascinating properties and various applications compared with the bulk or microsized counterparts. The increased surface area, number of dangling bond atoms and unsaturated co-ordination on surface lead to interface polarization, multiple scatter and absorbing more microwave. In this paper, four types of nanostructured RAMs were concisely introduced as follows: nanocrystal RAMs, core-shell nanocomposite RAMs, nanocomposite of MWCNT and inorganic materials RAMs, nanocomposite of nanostructured carbon and polymer RAMs. Their microwave properties were described in detail by taking various materials as展开更多
Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by...Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz).展开更多
In this paper, we focus on PHYTOPOROUS, a porous carbon material made entirely from plant-based ingredients, as a new broadband-wave absorber material that acts in the millimeter wave band. We created prototypes of th...In this paper, we focus on PHYTOPOROUS, a porous carbon material made entirely from plant-based ingredients, as a new broadband-wave absorber material that acts in the millimeter wave band. We created prototypes of thin rubber-sheet wave absorbers that contain porous carbon (PHYTOPOROUS) made from rice chaff and soybean hulls, which are both agricultural residue products that are generated in large quantities. We investigated the permittivity and reflectance characteristics of this material using the free-space time-domain method. The thin rubber-sheet wave absorber that contained PHYTOPOROUS made from soybean hulls exhibited a frequency band that was approximately 18 GHz wide and centered at 90 GHz. The return loss for this material was greater than −20 dB. This demonstrates that the material provides nearly constant reflection absorption over a wide frequency band.展开更多
The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, th...The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, the test data in requirement of traditional impedance method are "just enough" and not "redundant" to comprehensively evaluate the electromagnetic properties of materials. A novel optimization approach involving multiple impedance measurements is introduced in this paper to implement automatic measurement for electromagnetic parameters on microwave slot-line. Some results for standard samples and microwave absorbing materials are given.展开更多
A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) me...A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.展开更多
An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum fr...An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications.展开更多
AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using ...AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.展开更多
The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the...The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the acoustic impedance and acoustic absorption coefficient of the new muffler structure are calculated by acoustic electric analogy method,and then the noise attenuation is calculated.When the new muffler structure parameters change,the relationship among the noise frequency,the sound absorption coefficient and the noise attenuation is calculated by using MATLAB.Finally,the calculated results are compared with the experimental data to verify the correctness of the theoretical calculation.The variation of resonance peak,resonance frequency and attenuation band width of each structural parameter is analyzed by the relation curve.The conclusion shows that it is feasible to use multilayer sound absorbing materials as the body structure of the new muffler.And the influence relationship between the change of various parameters of the sound absorption structure with the sound absorption coefficient and noise attenuation is obtained.展开更多
The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertic...The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel (formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium. The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates. The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles. Then, the skin friction and the rate of heat transfer are consequently derived. It is noticed that, at different sections within the vertical channel, the fluid flow and the temperature profiles increase with time, which are both higher near the moving plate. In particular, increasing the gap between the plates increases the velocity and the temperature of the fluid, however, reduces the skin friction and the rate of heat transfer.展开更多
Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies...Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.展开更多
Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The r...Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results.The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown.Furthermore,the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed.The muffler based on multilayer sound absorbing material is different from the traditional muffler.After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler,the transmission loss value greatly increases,which provides new ideas and directions for future research on the muffler.展开更多
Objective:To study the effects of absorbable materials in non-weight-bearing bone fractures of extremities.Methods:After 66 patients with nonweight-bearing bone fractures of extremities were selected,absorbable materi...Objective:To study the effects of absorbable materials in non-weight-bearing bone fractures of extremities.Methods:After 66 patients with nonweight-bearing bone fractures of extremities were selected,absorbable materials were used in the observation group and metal materials were used in the control group.Results:After treatment,the bone healing in the observation group was significantly improved(P<0.05).Conclusion:the application of absorbable materials in non-weight-bearing bone fractures of extremities is effective.展开更多
The structure and electrochemical properties of nanocrystalline LaNi_5-type alloys were studied. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materia...The structure and electrochemical properties of nanocrystalline LaNi_5-type alloys were studied. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the partial substitution of Ni by Al or Mn in LaNi_(5-x)M_x alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi_5 material. For example, in the nanocrystalline LaNi_(3.75)Mn_(0.75)Al_(0.25)Co_(0.25) powder, discharge capacity up to 258 mAh·g^(-1) was measured (at 40 mA·g^(-1) discharge current). Furthermore, the effect of the graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. The mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline LaNi_5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, was successful.展开更多
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform...Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.展开更多
To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-pe...To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-performance viscoelastic material shock absorber, the geometrical structure of shock absorber is designed and machined. Then its theoretical model is derived by using analytical method, and the impact test is carried out on high-performance viscoelastic material shock absorber. The results show that experimental and theoretical damping force curves have good agreement, which validates the credibility of theoretical model. The investigation provides a potential way to enhance damping performance and increase vehicle load.展开更多
Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with ...Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.展开更多
Al2O3/TiOe/FeeO3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and ra- dar-absorption properties of the composite powder were characterized by transmission electron microsco...Al2O3/TiOe/FeeO3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and ra- dar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 rim) and the other is spherical A1203 particles (smaller than 80 rim). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increas- ing matching thickness. The effective absorption hand covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.展开更多
The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and p...The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and pressureless firing. The results indicate that sample B3 (designed mullite content 15 wt%) fired at 1 400 ℃ exhibited optimal performance with a bending strength of 97.41 MPa. Sample B3 can withstand 30-cycles thermal shock without cracking (wind cooling from 1 100 ℃ to room temperature), and the bending strength after thermal shock decreased by 17.92%. When the service temperature is 600℃, the thermal diffusivity, specific heat capacity, thermal conductivity and heat capacity are 6.48× 10-2 cm:.s-1, 0.69 kJ·kg-1. K-1, 9.62 W·m-1·K-1 and 977.76 kJ·kg-1, respectively. The XRD and SEM results show that SiC, mullite, or-quartz, and tridymite are connected closely, which gives the material a good bending strength. After 30-time thermal shock cycles, the structure of samples becomes loose. SiC grains are intersectingly arranged with rodshape mullite, exhibiting a favorable thermal shock resistance. The addition of Al(OH)3 and Suzhou kaolin can accelerate the synthesis of mullite, thus to reduce the firing temperature effectively. The volume effect of tfidymite is relatively small, improving the thermal shock resistance of materials. A higher designed muUite content yields a lower loss rate of bending strength. The mullite content should not be more than 15 wt% or else the bending strength would be diminished.展开更多
基金Supported by the National Natural Science Foundation of China(21706100 and U1507115)Natural Science Foundation of Jiangsu Province(BK20160500,BK20161362and BK20160491)+4 种基金the China Postdoctoral Science Foundation(2016M600373,2018T110452 and 2017M621649)China Postdoctoral Science Foundation of Jiangsu Province(1601016A,1701067C and 1701073C)Scientific Research Foundation for Advanced Talents,Jiangsu University(15JDG142)High-Level Personnel Training Project of Jiangsu Province(BRA2016142)Key Research and Development Program of Jiangxi Province(20171BBH80008)
文摘Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.
基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.04KJB430040)
文摘Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the frequency range of 2.6-18GHz were studied, and a mathematical analysis was made using the electromagnetic theory. The experimental results indicate that the minimum reflectivity of the radar absorbing materials continuously decreases with the increase of the carbonyl iron volume fraction, and the absorption peak also moves towards the low frequency for the same thickness of the RAM. The minimum reflectivity of the 3.0 mm RAM is -21.7dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%. The reflectivity of the RAM is not in direct proportional to the thickness of the RAM, when the RAM has the same volume fraction of the carbonyl iron. The reflectivity of the RAM presents a regular trend at a given carbonyl iron volume fraction in the frequency range of 2.6-18 GHz. With the increase of the thickness, the maximum absorption peak moves towards low frequency band, the minimum reflectivity firstly decreases and then increases, and the absorption bandwidth for reflectivity〈-10 dB firstly increases and then decreases. The microwave absorption properties of the RAM are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air's characteristic impedance and the input impedance.
文摘Nanostructured radar absorbing materials (RAMs) have received steadily growing interest because of their fascinating properties and various applications compared with the bulk or microsized counterparts. The increased surface area, number of dangling bond atoms and unsaturated co-ordination on surface lead to interface polarization, multiple scatter and absorbing more microwave. In this paper, four types of nanostructured RAMs were concisely introduced as follows: nanocrystal RAMs, core-shell nanocomposite RAMs, nanocomposite of MWCNT and inorganic materials RAMs, nanocomposite of nanostructured carbon and polymer RAMs. Their microwave properties were described in detail by taking various materials as
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20121101110014)
文摘Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz).
文摘In this paper, we focus on PHYTOPOROUS, a porous carbon material made entirely from plant-based ingredients, as a new broadband-wave absorber material that acts in the millimeter wave band. We created prototypes of thin rubber-sheet wave absorbers that contain porous carbon (PHYTOPOROUS) made from rice chaff and soybean hulls, which are both agricultural residue products that are generated in large quantities. We investigated the permittivity and reflectance characteristics of this material using the free-space time-domain method. The thin rubber-sheet wave absorber that contained PHYTOPOROUS made from soybean hulls exhibited a frequency band that was approximately 18 GHz wide and centered at 90 GHz. The return loss for this material was greater than −20 dB. This demonstrates that the material provides nearly constant reflection absorption over a wide frequency band.
文摘The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, the test data in requirement of traditional impedance method are "just enough" and not "redundant" to comprehensively evaluate the electromagnetic properties of materials. A novel optimization approach involving multiple impedance measurements is introduced in this paper to implement automatic measurement for electromagnetic parameters on microwave slot-line. Some results for standard samples and microwave absorbing materials are given.
基金National Nature Science Foundation of China(No.90405004)
文摘A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.
文摘An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications.
基金Supported by the National Natural Science Foundation of China(No.82060181)General Project funded by the Jiangxi Provincial Department of Education(No.GJJ2200194).
文摘AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.
基金National Natural Science Foundation of China(Nos.51705545 and 15A460041)。
文摘The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the acoustic impedance and acoustic absorption coefficient of the new muffler structure are calculated by acoustic electric analogy method,and then the noise attenuation is calculated.When the new muffler structure parameters change,the relationship among the noise frequency,the sound absorption coefficient and the noise attenuation is calculated by using MATLAB.Finally,the calculated results are compared with the experimental data to verify the correctness of the theoretical calculation.The variation of resonance peak,resonance frequency and attenuation band width of each structural parameter is analyzed by the relation curve.The conclusion shows that it is feasible to use multilayer sound absorbing materials as the body structure of the new muffler.And the influence relationship between the change of various parameters of the sound absorption structure with the sound absorption coefficient and noise attenuation is obtained.
文摘The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel (formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium. The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates. The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles. Then, the skin friction and the rate of heat transfer are consequently derived. It is noticed that, at different sections within the vertical channel, the fluid flow and the temperature profiles increase with time, which are both higher near the moving plate. In particular, increasing the gap between the plates increases the velocity and the temperature of the fluid, however, reduces the skin friction and the rate of heat transfer.
文摘Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.
基金National Natural Science Foundation of China(Nos.51705545 and 15A460041)。
文摘Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results.The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown.Furthermore,the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed.The muffler based on multilayer sound absorbing material is different from the traditional muffler.After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler,the transmission loss value greatly increases,which provides new ideas and directions for future research on the muffler.
文摘Objective:To study the effects of absorbable materials in non-weight-bearing bone fractures of extremities.Methods:After 66 patients with nonweight-bearing bone fractures of extremities were selected,absorbable materials were used in the observation group and metal materials were used in the control group.Results:After treatment,the bone healing in the observation group was significantly improved(P<0.05).Conclusion:the application of absorbable materials in non-weight-bearing bone fractures of extremities is effective.
文摘The structure and electrochemical properties of nanocrystalline LaNi_5-type alloys were studied. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the partial substitution of Ni by Al or Mn in LaNi_(5-x)M_x alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi_5 material. For example, in the nanocrystalline LaNi_(3.75)Mn_(0.75)Al_(0.25)Co_(0.25) powder, discharge capacity up to 258 mAh·g^(-1) was measured (at 40 mA·g^(-1) discharge current). Furthermore, the effect of the graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. The mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline LaNi_5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, was successful.
基金supported by National Natural Science Foundation of China(No.52103361)Shaanxi University Youth Outstanding Talents Support Plan,Scientific and Technological Plan Project of Xi’an Beilin District(No.GX2143)。
文摘Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.
基金National Natural Science Foundation of China(No.51476150)Funds for International Joint Research Program of Shanxi Province(No.2014081028)Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province
文摘To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-performance viscoelastic material shock absorber, the geometrical structure of shock absorber is designed and machined. Then its theoretical model is derived by using analytical method, and the impact test is carried out on high-performance viscoelastic material shock absorber. The results show that experimental and theoretical damping force curves have good agreement, which validates the credibility of theoretical model. The investigation provides a potential way to enhance damping performance and increase vehicle load.
文摘Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.
基金financially supported by the National Natural Science Foundation of China (No.51471023)the Major State Basic Research Development Program of China (No.2014GB120000)
文摘Al2O3/TiOe/FeeO3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and ra- dar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 rim) and the other is spherical A1203 particles (smaller than 80 rim). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increas- ing matching thickness. The effective absorption hand covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.
基金Funded by the National Basic Research Program(973 Program)(No.2010CB227105)
文摘The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and pressureless firing. The results indicate that sample B3 (designed mullite content 15 wt%) fired at 1 400 ℃ exhibited optimal performance with a bending strength of 97.41 MPa. Sample B3 can withstand 30-cycles thermal shock without cracking (wind cooling from 1 100 ℃ to room temperature), and the bending strength after thermal shock decreased by 17.92%. When the service temperature is 600℃, the thermal diffusivity, specific heat capacity, thermal conductivity and heat capacity are 6.48× 10-2 cm:.s-1, 0.69 kJ·kg-1. K-1, 9.62 W·m-1·K-1 and 977.76 kJ·kg-1, respectively. The XRD and SEM results show that SiC, mullite, or-quartz, and tridymite are connected closely, which gives the material a good bending strength. After 30-time thermal shock cycles, the structure of samples becomes loose. SiC grains are intersectingly arranged with rodshape mullite, exhibiting a favorable thermal shock resistance. The addition of Al(OH)3 and Suzhou kaolin can accelerate the synthesis of mullite, thus to reduce the firing temperature effectively. The volume effect of tfidymite is relatively small, improving the thermal shock resistance of materials. A higher designed muUite content yields a lower loss rate of bending strength. The mullite content should not be more than 15 wt% or else the bending strength would be diminished.