This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmi...This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.展开更多
A quasi-optical dielectric lens used for W-band focal plane array passive imaging has been developed. The imaging system requires the lens to form beam spot with 3 dB width less than 35 mm at distance of 3500 mm. The ...A quasi-optical dielectric lens used for W-band focal plane array passive imaging has been developed. The imaging system requires the lens to form beam spot with 3 dB width less than 35 mm at distance of 3500 mm. The powerful optical design software ZEMAX was utilized to design the contours of the lens, and numerical method based on ray tracing and Huygens’ Principle was processed to verify the design result. Measurement result shows that the 3 dB width of the beam spot formed by the lens is 34 mm at distance of 3460 mm, and the beam pattern on imaging plane are equally arranged and the intensity decreases only 0.55 dB while the object lateral deviation increases to 300 mm.展开更多
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for indivi...BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.展开更多
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ...Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.展开更多
Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue pen...Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.展开更多
This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techni...This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.展开更多
In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpat...In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.展开更多
AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-con...AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.展开更多
The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing i...The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.展开更多
BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diff...BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.展开更多
BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindicatio...BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.展开更多
BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation gr...BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation grade of CRC is of great value.AIM To develop and validate machine learning-based models for predicting the differ-entiation grade of CRC based on T2-weighted images(T2WI).METHODS We retrospectively collected the preoperative imaging and clinical data of 315 patients with CRC who underwent surgery from March 2018 to July 2023.Patients were randomly assigned to a training cohort(n=220)or a validation cohort(n=95)at a 7:3 ratio.Lesions were delineated layer by layer on high-resolution T2WI.Least absolute shrinkage and selection operator regression was applied to screen for radiomic features.Radiomics and clinical models were constructed using the multilayer perceptron(MLP)algorithm.These radiomic features and clinically relevant variables(selected based on a significance level of P<0.05 in the training set)were used to construct radiomics-clinical models.The performance of the three models(clinical,radiomic,and radiomic-clinical model)were evaluated using the area under the curve(AUC),calibration curve and decision curve analysis(DCA).RESULTS After feature selection,eight radiomic features were retained from the initial 1781 features to construct the radiomic model.Eight different classifiers,including logistic regression,support vector machine,k-nearest neighbours,random forest,extreme trees,extreme gradient boosting,light gradient boosting machine,and MLP,were used to construct the model,with MLP demonstrating the best diagnostic performance.The AUC of the radiomic-clinical model was 0.862(95%CI:0.796-0.927)in the training cohort and 0.761(95%CI:0.635-0.887)in the validation cohort.The AUC for the radiomic model was 0.796(95%CI:0.723-0.869)in the training cohort and 0.735(95%CI:0.604-0.866)in the validation cohort.The clinical model achieved an AUC of 0.751(95%CI:0.661-0.842)in the training cohort and 0.676(95%CI:0.525-0.827)in the validation cohort.All three models demonstrated good accuracy.In the training cohort,the AUC of the radiomic-clinical model was significantly greater than that of the clinical model(P=0.005)and the radiomic model(P=0.016).DCA confirmed the clinical practicality of incorporating radiomic features into the diagnostic process.CONCLUSION In this study,we successfully developed and validated a T2WI-based machine learning model as an auxiliary tool for the preoperative differentiation between well/moderately and poorly differentiated CRC.This novel approach may assist clinicians in personalizing treatment strategies for patients and improving treatment efficacy.展开更多
Imaging techniques play a crucial role in the modern era of medicine,particularly in gastroenterology.Nowadays,various non-invasive and invasive imaging modalities are being routinely employed to evaluate different ga...Imaging techniques play a crucial role in the modern era of medicine,particularly in gastroenterology.Nowadays,various non-invasive and invasive imaging modalities are being routinely employed to evaluate different gastrointestinal(GI)diseases.However,many instrumental as well as clinical issues are arising in the area of modern GI imaging.This minireview article aims to briefly overview the clinical issues and challenges encountered in imaging GI diseases while highlighting our experience in the field.We also summarize the advances in clinically available diagnostic methods for evaluating different diseases of the GI tract and demonstrate our experience in the area.In conclusion,almost all imaging techniques used in imaging GI diseases can also raise many challenges that necessitate careful consideration and profound expertise in this field.展开更多
General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,i...General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,includingγ-aminobutyric acid,glutamate,norepinephrine,acetylcholine,and dopamine,in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective.Results revealed that the concentrations of γ-aminobutyric acid,glutamate,norepinephrine,and acetylcholine increased in the cortex during propofol-induced loss of consciousness.Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia.Notably,the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness.Furthermore,the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups.These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.展开更多
BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct ...BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct management are crucial for saving the lives of such patients and improving their prognosis.This article retrospectively analyzed the imaging and clinical data of three patients,to explore the imaging characteristics and treatment strategies for carotid artery occlusion,combined with severe skull base fractures.CASE SUMMARY This case included three patients,all male,aged 21,63,and 16 years.They underwent plain film skull computed tomography(CT)examination at the onset of their illnesses,which revealed fractures at the bases of their skulls.Ultimately,these cases were definitively diagnosed through CT angiography(CTA)examinations.The first patient did not receive surgical treatment,only anticoagulation therapy,and recovered smoothly with no residual limb dysfunction(Case 1).The other two patients both developed intracranial hypertension and underwent decompressive craniectomy.One of these patients had high intracranial pressure and significant brain swelling postoperatively,leading the family to choose to take him home(Case 2).The other patient also underwent decompressive craniectomy and recovered well postoperatively with only mild limb motor dysfunction(Case 3).We retrieved literature from PubMed on skull base fractures causing ICA occlusion to determine the imaging characteristics and treatment strategies for this type of disease.CONCLUSION For patients with cranial trauma combined with skull base fractures,it is essential to complete a CTA examination as soon as possible,to screen for blunt cerebrovascular injury.展开更多
BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a we...BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a well-established treatment for FI.Given the increased need of magnetic resonance imaging(MRI)for diagnostics,the In-terStim which was previously used in sacral nerve stimulation was limited by MRI incompatibility.Medtronic MRI-compatible InterStim was approved by the United States Food and Drug Administration in August 2020 and has been widely used.AIM To evaluate the efficacy,outcomes and complications of the MRI-compatible InterStim.METHODS Data of patients who underwent MRI-compatible Medtronic InterStim placement at UPMC Williamsport,University of Minnesota,Advocate Lutheran General Hospital,and University of Wisconsin-Madison was pooled and analyzed.Patient demographics,clinical features,surgical techniques,complications,and outcomes were analyzed.Strengthening the Reporting of Observational studies in Epidemiology(STROBE)cross-sectional reporting guidelines were used.RESULTS Seventy-three patients had the InterStim implanted.The mean age was 63.29±12.2 years.Fifty-seven(78.1%)patients were females and forty-two(57.5%)patients had diabetes.In addition to incontinence,overlapping symptoms included diarrhea(23.3%),fecal urgency(58.9%),and urinary incontinence(28.8%).Fifteen(20.5%)patients underwent Peripheral Nerve Evaluation before proceeding to definite implant placement.Thirty-two(43.8%)patients underwent rechargeable InterStim placement.Three(4.1%)patients needed removal of the implant.Migration of the external lead connection was observed in 7(9.6%)patients after the stage I procedure.The explanation for one patient was due to infection.Seven(9.6%)patients had other complications like nerve pain,hematoma,infection,lead fracture,and bleeding.The mean follow-up was 6.62±3.5 mo.Sixty-eight(93.2%)patients reported significant improvement of symptoms on follow-up evaluation.CONCLUSION This study shows promising results with significant symptom improvement,good efficacy and good patient outcomes with low complication rates while using MRI compatible InterStim for FI.Further long-term follow-up and future studies with a larger patient population is recommended.展开更多
Pediatric inflammatory bowel disease(IBD)is a chronic inflammatory disorder,with increasing incidence and prevalence worldwide.There have been recent advances in imaging and endoscopic technology for disease diagnosis...Pediatric inflammatory bowel disease(IBD)is a chronic inflammatory disorder,with increasing incidence and prevalence worldwide.There have been recent advances in imaging and endoscopic technology for disease diagnosis,treatment,and monitoring.Intestinal ultrasound,including transabdominal,transperineal,and endoscopic,has been emerging for the assessment of transmural bowel inflammation and disease complications(e.g.,fistula,abscess).Aside from surgery,IBD-related intestinal strictures now have endoscopic treatment options including through-the-scope balloon dilatation,injection,and needle knife stricturotomy and new evaluation tools such as endoscopic functional lumen imaging probe.Unsedated transnasal endoscopy may have a role in patients with upper gastrointestinal Crohn’s disease or those with IBD with new upper gastrointestinal symptoms.Improvements to dysplasia screening in pediatric patients with longstanding colonic disease or primary sclerosing cholangitis hold promise with the addition of virtual chromoendoscopy and ongoing research in the field of artificial intelligence-assisted endoscopic detection.Artificial intelligence and machine learning is a rapidly evolving field,with goals of further personalizing IBD diagnosis and treatment selection as well as prognostication.This review summarized these advancements,focusing on pediatric patients with IBD.展开更多
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has bee...Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.展开更多
基金Science,Technology and Innovation Project of Xiongan New Area (Grant No.2022XAGG0181)LiaoNing Revitalization Talents Program (Grant No.XLYC2007074)+1 种基金Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program (Grant No.RC220523)Natural Science Foundation of Liaoning Province of China (Grant Nos.2022-YGJC-03 and 2022-MS-034)to provide fund for conducting experiments。
文摘This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.
文摘A quasi-optical dielectric lens used for W-band focal plane array passive imaging has been developed. The imaging system requires the lens to form beam spot with 3 dB width less than 35 mm at distance of 3500 mm. The powerful optical design software ZEMAX was utilized to design the contours of the lens, and numerical method based on ray tracing and Huygens’ Principle was processed to verify the design result. Measurement result shows that the 3 dB width of the beam spot formed by the lens is 34 mm at distance of 3460 mm, and the beam pattern on imaging plane are equally arranged and the intensity decreases only 0.55 dB while the object lateral deviation increases to 300 mm.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
文摘BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.
基金supported by the National Natural Science Foundation of China,No.31970906(to WLei)the Natural Science Foundation of Guangdong Province,No.2020A1515011079(to WLei)+4 种基金Key Technologies R&D Program of Guangdong Province,No.2018B030332001(to GC)Science and Technology Projects of Guangzhou,No.202206060002(to GC)the Youth Science Program of the National Natural Science Foundation of China,No.32100793(to ZX)the Pearl River Innovation and Entrepreneurship Team,No.2021ZT09 Y552Yi-Liang Liu Endowment Fund from Jinan University Education Development Foundation。
文摘Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.
基金support from the Sichuan Science and Technology Program(2019ZDZX0036)the support from the Analytical&Testing Center of Sichuan University.
文摘Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.
基金support from the National Natural Science Foundation of China(Nos.62205259,62075175,61975254,62375212,62005203 and 62105254)the Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology(No.B022420004)the Fundamental Research Funds for the Central Universities(No.ZYTS23125).
文摘This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.
基金supported by the National Key R&D Program of China(No.2020YFA0710700)the National Natural Science Foundation of China(Nos.51873201 and 82172071)+2 种基金Key Research and Development Program of Anhui Province(No.202104b11020025)the Fundamental Research Funds for the Central Universities(No.YD2060002015)the CAS Youth Interdisciplinary Team(No.JCTD-2021-08).
文摘In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.
基金Supported by National Natural Science Foundation of China(No.82070998)Young Scientists Fund of the National Natural Science Foundation of China(No.82101174)+3 种基金Program of Beijing Hospitals Authority(No.XMLX202103)Program of Beijing Municipal Science&Technology Commission(No.Z201100005520044)Capital Health Development Research Special Project(No.2022-1-2053)Beijing Hospitals Authority Youth Programme(No.QML20230205).
文摘AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.
文摘The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.
基金the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital,NO.CY2021-QNB09the Science and Technology Project of Gansu Province,NO.21JR11RA122+1 种基金Department of Education of Gansu Province:Innovation Fund Project,NO.2022B-056Gansu Province Clinical Research Center for Functional and Molecular Imaging,NO.21JR7RA438.
文摘BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.
基金Supported by Beijing Hospitals Authority Youth Program,No.QML20231103Beijing Hospitals Authority Ascent Plan,No.DFL20191103National Key R&D Program of China,No.2023YFC3402805.
文摘BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.
基金the Fujian Province Clinical Key Specialty Construction Project,No.2022884Quanzhou Science and Technology Plan Project,No.2021N034S+1 种基金The Youth Research Project of Fujian Provincial Health Commission,No.2022QNA067Malignant Tumor Clinical Medicine Research Center,No.2020N090s.
文摘BACKGROUND The study on predicting the differentiation grade of colorectal cancer(CRC)based on magnetic resonance imaging(MRI)has not been reported yet.Developing a non-invasive model to predict the differentiation grade of CRC is of great value.AIM To develop and validate machine learning-based models for predicting the differ-entiation grade of CRC based on T2-weighted images(T2WI).METHODS We retrospectively collected the preoperative imaging and clinical data of 315 patients with CRC who underwent surgery from March 2018 to July 2023.Patients were randomly assigned to a training cohort(n=220)or a validation cohort(n=95)at a 7:3 ratio.Lesions were delineated layer by layer on high-resolution T2WI.Least absolute shrinkage and selection operator regression was applied to screen for radiomic features.Radiomics and clinical models were constructed using the multilayer perceptron(MLP)algorithm.These radiomic features and clinically relevant variables(selected based on a significance level of P<0.05 in the training set)were used to construct radiomics-clinical models.The performance of the three models(clinical,radiomic,and radiomic-clinical model)were evaluated using the area under the curve(AUC),calibration curve and decision curve analysis(DCA).RESULTS After feature selection,eight radiomic features were retained from the initial 1781 features to construct the radiomic model.Eight different classifiers,including logistic regression,support vector machine,k-nearest neighbours,random forest,extreme trees,extreme gradient boosting,light gradient boosting machine,and MLP,were used to construct the model,with MLP demonstrating the best diagnostic performance.The AUC of the radiomic-clinical model was 0.862(95%CI:0.796-0.927)in the training cohort and 0.761(95%CI:0.635-0.887)in the validation cohort.The AUC for the radiomic model was 0.796(95%CI:0.723-0.869)in the training cohort and 0.735(95%CI:0.604-0.866)in the validation cohort.The clinical model achieved an AUC of 0.751(95%CI:0.661-0.842)in the training cohort and 0.676(95%CI:0.525-0.827)in the validation cohort.All three models demonstrated good accuracy.In the training cohort,the AUC of the radiomic-clinical model was significantly greater than that of the clinical model(P=0.005)and the radiomic model(P=0.016).DCA confirmed the clinical practicality of incorporating radiomic features into the diagnostic process.CONCLUSION In this study,we successfully developed and validated a T2WI-based machine learning model as an auxiliary tool for the preoperative differentiation between well/moderately and poorly differentiated CRC.This novel approach may assist clinicians in personalizing treatment strategies for patients and improving treatment efficacy.
基金Supported by The European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008。
文摘Imaging techniques play a crucial role in the modern era of medicine,particularly in gastroenterology.Nowadays,various non-invasive and invasive imaging modalities are being routinely employed to evaluate different gastrointestinal(GI)diseases.However,many instrumental as well as clinical issues are arising in the area of modern GI imaging.This minireview article aims to briefly overview the clinical issues and challenges encountered in imaging GI diseases while highlighting our experience in the field.We also summarize the advances in clinically available diagnostic methods for evaluating different diseases of the GI tract and demonstrate our experience in the area.In conclusion,almost all imaging techniques used in imaging GI diseases can also raise many challenges that necessitate careful consideration and profound expertise in this field.
基金supported by the National Natural Science Foundation of China(81870841 and 82171192 to X.S.L.,82101349 to G.L.Q.)。
文摘General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,includingγ-aminobutyric acid,glutamate,norepinephrine,acetylcholine,and dopamine,in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective.Results revealed that the concentrations of γ-aminobutyric acid,glutamate,norepinephrine,and acetylcholine increased in the cortex during propofol-induced loss of consciousness.Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia.Notably,the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness.Furthermore,the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups.These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.
文摘BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct management are crucial for saving the lives of such patients and improving their prognosis.This article retrospectively analyzed the imaging and clinical data of three patients,to explore the imaging characteristics and treatment strategies for carotid artery occlusion,combined with severe skull base fractures.CASE SUMMARY This case included three patients,all male,aged 21,63,and 16 years.They underwent plain film skull computed tomography(CT)examination at the onset of their illnesses,which revealed fractures at the bases of their skulls.Ultimately,these cases were definitively diagnosed through CT angiography(CTA)examinations.The first patient did not receive surgical treatment,only anticoagulation therapy,and recovered smoothly with no residual limb dysfunction(Case 1).The other two patients both developed intracranial hypertension and underwent decompressive craniectomy.One of these patients had high intracranial pressure and significant brain swelling postoperatively,leading the family to choose to take him home(Case 2).The other patient also underwent decompressive craniectomy and recovered well postoperatively with only mild limb motor dysfunction(Case 3).We retrieved literature from PubMed on skull base fractures causing ICA occlusion to determine the imaging characteristics and treatment strategies for this type of disease.CONCLUSION For patients with cranial trauma combined with skull base fractures,it is essential to complete a CTA examination as soon as possible,to screen for blunt cerebrovascular injury.
文摘BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a well-established treatment for FI.Given the increased need of magnetic resonance imaging(MRI)for diagnostics,the In-terStim which was previously used in sacral nerve stimulation was limited by MRI incompatibility.Medtronic MRI-compatible InterStim was approved by the United States Food and Drug Administration in August 2020 and has been widely used.AIM To evaluate the efficacy,outcomes and complications of the MRI-compatible InterStim.METHODS Data of patients who underwent MRI-compatible Medtronic InterStim placement at UPMC Williamsport,University of Minnesota,Advocate Lutheran General Hospital,and University of Wisconsin-Madison was pooled and analyzed.Patient demographics,clinical features,surgical techniques,complications,and outcomes were analyzed.Strengthening the Reporting of Observational studies in Epidemiology(STROBE)cross-sectional reporting guidelines were used.RESULTS Seventy-three patients had the InterStim implanted.The mean age was 63.29±12.2 years.Fifty-seven(78.1%)patients were females and forty-two(57.5%)patients had diabetes.In addition to incontinence,overlapping symptoms included diarrhea(23.3%),fecal urgency(58.9%),and urinary incontinence(28.8%).Fifteen(20.5%)patients underwent Peripheral Nerve Evaluation before proceeding to definite implant placement.Thirty-two(43.8%)patients underwent rechargeable InterStim placement.Three(4.1%)patients needed removal of the implant.Migration of the external lead connection was observed in 7(9.6%)patients after the stage I procedure.The explanation for one patient was due to infection.Seven(9.6%)patients had other complications like nerve pain,hematoma,infection,lead fracture,and bleeding.The mean follow-up was 6.62±3.5 mo.Sixty-eight(93.2%)patients reported significant improvement of symptoms on follow-up evaluation.CONCLUSION This study shows promising results with significant symptom improvement,good efficacy and good patient outcomes with low complication rates while using MRI compatible InterStim for FI.Further long-term follow-up and future studies with a larger patient population is recommended.
文摘Pediatric inflammatory bowel disease(IBD)is a chronic inflammatory disorder,with increasing incidence and prevalence worldwide.There have been recent advances in imaging and endoscopic technology for disease diagnosis,treatment,and monitoring.Intestinal ultrasound,including transabdominal,transperineal,and endoscopic,has been emerging for the assessment of transmural bowel inflammation and disease complications(e.g.,fistula,abscess).Aside from surgery,IBD-related intestinal strictures now have endoscopic treatment options including through-the-scope balloon dilatation,injection,and needle knife stricturotomy and new evaluation tools such as endoscopic functional lumen imaging probe.Unsedated transnasal endoscopy may have a role in patients with upper gastrointestinal Crohn’s disease or those with IBD with new upper gastrointestinal symptoms.Improvements to dysplasia screening in pediatric patients with longstanding colonic disease or primary sclerosing cholangitis hold promise with the addition of virtual chromoendoscopy and ongoing research in the field of artificial intelligence-assisted endoscopic detection.Artificial intelligence and machine learning is a rapidly evolving field,with goals of further personalizing IBD diagnosis and treatment selection as well as prognostication.This review summarized these advancements,focusing on pediatric patients with IBD.
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(No.2019YFE03020001)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSC-CIP010)the Fundamental Research Funds for the Central Universities。
文摘Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.