期刊文献+
共找到92,395篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters
1
作者 Tao Chen Jiaqiang Liu +3 位作者 Gang Liu Hui Xiao Chunhui Li Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期219-229,共11页
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici... Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects. 展开更多
关键词 Circular-arc milling cutter Titanium alloy Ball-end milling cutter Surface quality milling force Tool wear Machining quality
下载PDF
Effects of Milling Methods on Rice Flour Properties and Rice Product Quality:A Review
2
作者 TIAN Yu SUN Jing +7 位作者 LI Jiaxin WANG Aixia NIE Mengzi GONG Xue WANG Lili LIU Liya WANG Fengzhong TONG Litao 《Rice science》 SCIE CSCD 2024年第1期33-46,共14页
High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and qualit... High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes. 展开更多
关键词 flour property milling equipment milling method rice flour rice product quality semi-dry milling
下载PDF
Milling degree affects the fermentation properties of rice:perspectives from the composition of nutrients and gut microbiota via in vitro fermentation
3
作者 Yu Zhang Fan Li +7 位作者 Shutong Pan Bing Bai Kai Huang Sen Li Hongwei Cao Tian Xie Jian Xie Xiao Guan 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1578-1588,共11页
Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represente... Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties. 展开更多
关键词 Rice processing milling Whole grains Gut microbiota
下载PDF
Unraveling engineering disturbance effects on deformation in red-bed mudstone railway cuttings:incorporating crack-facilitated moisture diffusion
4
作者 HUANG Kang DAI Zhangjun +3 位作者 YAN Chengzeng YAO Junkai CHI Zecheng CHEN Shanxiong 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1663-1682,共20页
Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli... Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways. 展开更多
关键词 Red-bed mudstone Railway cutting FDEM Moisture diffusion DEFORMATION CRACK
下载PDF
Improving hydrogen storage thermodynamics and kinetics of Ce-Mg-Ni-based alloy by mechanical milling with TiF_(3)
5
作者 Hongwei Shang Wei Zhang +4 位作者 Xin Wei Yaqin Li Zeming Yuan Jun Li Yanghuan Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1593-1607,共15页
Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocompo... Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics. 展开更多
关键词 Mg-based hydrides TiF_(3) Ball milling THERMODYNAMICS KINETICS
下载PDF
Distribution of antioxidants and phenolic compounds in flour milling fractions from hard red winter wheat
6
作者 Lauren Renee Brewer Jittawan Kubola +1 位作者 Sirithon Siriamornpun Yong-Cheng Shi 《Grain & Oil Science and Technology》 CAS 2024年第2期71-78,共8页
Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not bee... Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties. 展开更多
关键词 Wheat milling streams ANTIOXIDANTS Phenolic acids Flavonoid ANTHOCYANIN
下载PDF
Precipitates Generation Mechanism and Surface Quality Improvement for Aluminum Alloy 6061 in Diamond Cutting
7
作者 王海龙 DENG Wenping 王素娟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期150-159,共10页
To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p... To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061. 展开更多
关键词 Al6061 PRECIPITATES aging treatment diamond cutting surface roughness
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables
8
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Cutting Propagation Technique of Pennisetum purpureum Schum
9
作者 Yuanbin HU Jing ZHANG +2 位作者 Yanan LIU Xiaoyu LIANG Yang JI 《Plant Diseases and Pests》 2024年第2期27-31,共5页
[Objectives]The paper was to study the cutting propagation technique of Pennisetum purpureum Schum and to provide a technical reference for establishing an efficient cutting propagation method.[Methods]Six treatments ... [Objectives]The paper was to study the cutting propagation technique of Pennisetum purpureum Schum and to provide a technical reference for establishing an efficient cutting propagation method.[Methods]Six treatments were set up using P.purpureum cv.Guiminyin and P.purpureum cv.Guimu-1 as test materials,including 1-node oblique insertion,1-node oblique insertion+rooting powder,1-node transverse burial,2-node oblique insertion,2-node oblique insertion+rooting powder and 2-node transverse burial.The following indices were observed and determined for P.purpureum cuttings:emergence rate,rooting rate,root number,longest root length,fresh root weight,plant height,number of tillers,number of leaves,and fresh stem and leaf weight.[Results]In the 2-node cutting+rooting powder treatment,Guiminyin and Guimu-1 exhibited the highest survival rate,root growth indices,and stem and leaf growth indices,with the emergence rates of 94.29%and 90.26%,respectively.The 2-node cutting treatment followed closely behind,while the 1-node cutting treatment had the lowest indices.Under the same treatment,Guimuyin exhibited higher mean values for plant height,number of leaves,fresh stem and leaf weight,longest root length,and fresh root weight compared to Guimu-1.However,it had lower mean number of tillers,and emergence rate and rooting rate of the 1-node cutting treatment compared to Guimu-1.[Conclusions]The P.purpureum cuttings thrived in the 2-node cutting+rooting powder treatment,and the overall cutting effect of Guiminyin was superior to that of Guimu-1. 展开更多
关键词 Pennisetum purpureum Schum cutting PROPAGATION Emergence rate
下载PDF
Endoscopic radial incision and cutting method for adult congenital duodenal webs:A case report
10
作者 Hyun Deok Shin 《World Journal of Clinical Cases》 SCIE 2024年第18期3622-3628,共7页
BACKGROUND Congenital duodenal webs are rare in adults and can lead to various symptoms such as nausea,vomiting,and postprandial fullness.The treatment for this disease is mostly surgical.Endoscopic treatment techniqu... BACKGROUND Congenital duodenal webs are rare in adults and can lead to various symptoms such as nausea,vomiting,and postprandial fullness.The treatment for this disease is mostly surgical.Endoscopic treatment techniques have been developed and attempted for this disease.Endoscopic radial incision and cutting(RIC)techniques are reportedly very effective in benign anastomotic stricture.This case report highlights the effectiveness and safety of endoscopic RIC as a minimally invasive treatment for adult congenital duodenal webs.CASE SUMMARY A 23-year-old female patient with indigestion was referred to a tertiary hospital.The patient complained of postprandial fullness in the epigastric region.Previous physical examinations or blood tests indicated no abnormalities.Computed tomography revealed an eccentric broad-based delayed-enhancing mass-like lesion in the second portion of the duodenum.Endoscopy showed an enlarged gastric cavity and a significantly dilated duodenal bulb;a very small hole was observed in the distal part of the second portion,and scope passage was not possible.Gastrografin upper gastrointestinal series was performed,revealing an intraduodenal barium contrast-filled sac with a curvilinear narrow radiolucent rim,a typical"windsock"sign.Endoscopic RIC was performed on the duodenal web.The patient recovered uneventfully.Follow-up endoscopy showed a patent duodenal lumen without any residual stenosis.The patient reported complete resolution of symptoms at the 18-month follow-up.CONCLUSION Endoscopic RIC may be an effective treatment for congenital duodenal webs in adults. 展开更多
关键词 Congenital duodenal web Endoscopic treatment Radial incision and cutting method Surgery Case report
下载PDF
Optimization of Cutting Parameters in Helical Milling of Carbon Fiber Reinforced Polymer 被引量:3
11
作者 Haiyan Wang Xuda Qin +1 位作者 Dongxu Wu Aijuan Song 《Transactions of Tianjin University》 EI CAS 2018年第1期91-100,共10页
To investigate cutting performance in the helical milling of carbon fiber reinforced polymer(CFRP),experiments were conducted with unidirectional laminates.The results show that the influence of cutting parameters is ... To investigate cutting performance in the helical milling of carbon fiber reinforced polymer(CFRP),experiments were conducted with unidirectional laminates.The results show that the influence of cutting parameters is very significant in the helical milling process. The axial force increases with the increase of cutting speed, which is below 95 m/min; otherwise, the axial force decreases with the increase of cutting speed. The resultant force always increases when cutting speed increases; with the increase of tangential and axial feed rates, cutting forces increase gradually. In addition, damage rings can appear in certain regions of the entry edges; therefore, the relationship between machining performance(cutting forces and holemaking quality) and cutting parameters is established using the nonlinear fitting methodology. Thus, three cutting parameters in the helical milling of CFRP, under the steady state, are optimized based on the multi-objective genetic algorithm, including material removal rate and machining performance. Finally, experiments were carried out to prove the validity of optimized cutting parameters. 展开更多
关键词 CFRP HELICAL milling cutting PARAMETERS MULTI-OBJECTIVE optimization
下载PDF
Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining 被引量:4
12
作者 YingTang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期90-95,共6页
A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating u... A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear. 展开更多
关键词 end milling cutting temperature intermittent cutting die/mold machining
下载PDF
Development of micro milling force model and cutting parameter optimization 被引量:5
13
作者 Shih-ming WANG Da-fun CHEN +1 位作者 Min-chang JANG Shambaljamts TSOOJ 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期851-858,共8页
Taking the minimum chip thickness effect,cutter deflection,and spindle run-out into account,a micro milling force model and a method to determine the optimal micro milling parameters were developed.The micro milling f... Taking the minimum chip thickness effect,cutter deflection,and spindle run-out into account,a micro milling force model and a method to determine the optimal micro milling parameters were developed.The micro milling force model was derived as a function of the cutting coefficients and the instantaneous projected cutting area that was determined based on the machining parameters and the rotation trajectory of the cutter edges.When an allowable micro cutter deflection is defined,the maximum allowable cutting force can be determined.The optimal machining parameters can then be computed based on the cutting force model for better machining efficiency and accuracy.To verify the proposed cutting force model and the method to determine the optimal cutting parameters,micro-milling experiments were conducted,and the results show the feasibility and effectiveness of the model and method. 展开更多
关键词 MICRO-milling cutting force SPINDLE RUN out CUTTER DEFLECTION optimal parameter
下载PDF
Prediction of Dynamic Cutting Force and Regenerative Chatter Stability in Inserted Cutters Milling 被引量:9
14
作者 LI Zhongqun LIU Qiang +1 位作者 YUAN Songmei HUANG Kaisheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期555-563,共9页
Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact c... Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications. 展开更多
关键词 inserted cutter cutting force prediction chatter stability dynamic simulation
下载PDF
Effects of Cutting Parameters on Tool Insert Wear in End Milling of Titanium Alloy Ti6A14V 被引量:4
15
作者 LUO Ming WANG Jing +1 位作者 WU Baohai ZHANG Dinghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期53-59,共7页
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The in... Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production. 展开更多
关键词 tool wear TI6A14V cutting parameter hard-to-cut material
下载PDF
A Model for Predicting Dynamic Cutting Forces in Sand Mould Milling with Orthogonal Cutting 被引量:2
16
作者 Zhong-De Shan Fu-Xian Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期95-105,共11页
Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete depositio... Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete deposition material. There is still a lack of theoretical research on the cutting force. In order to realize the prediction and control of the cut?ting force in the sand mould milling process, an analytical model of cutting force is proposed based on the unequal division shear zone model of orthogonal cutting. The deformation velocity relations of the chip within the orthogonal cutting shear zone are analyzed first. According to the flow behavior of granular, the unequal division shear zone model of sand mould is presented, in which the governing equations of shear strain rate, strain and velocity are estab?lished. The constitutive relationship of quasi?solid–liquid transition is introduced to build the 2D constitutive equation and deduce the cutting stress in the mould shear zone. According to the cutting geometric relations of up milling with straight cutting edge and the transformation relationship between cutting stress and cutting force, the dynamic cutting forces are predicted for di erent milling conditions. Compared with the experimental results, the predicted results show good agreement, indicating that the predictive model of cutting force in milling sand mould is validated. Therefore, the proposed model can provide the theoretical guidance for cutting force control in high e ciency mill?ing sand mould. 展开更多
关键词 Green manufacture cutting force Sand mould milling Orthogonal cutting Quasi?solid–liquid transition
下载PDF
Bone Milling:On Monitoring Cutting State and Force Using Sound Signals 被引量:1
17
作者 Zhenzhi Ying Liming Shu Naohiko Sugita 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期123-134,共12页
Efficient monitoring of bone milling conditions in orthopedic and neurosurgical surgery can prevent tissue,bone,and tool damage,and reduce surgery time.Current researches are mainly focused on recognizing the cutting ... Efficient monitoring of bone milling conditions in orthopedic and neurosurgical surgery can prevent tissue,bone,and tool damage,and reduce surgery time.Current researches are mainly focused on recognizing the cutting state using force signal.However,the force signal during the milling process is difficult and expensive to acquire.In this study,a neural network-based method is proposed to recognize the cutting state and force during the bone milling process using sound signals.Numerical modeling of the cutting force is performed to capture the relationship between the cutting force and the depth of cut in the bone milling process.The force model is used to calibrate the training data to improve the recognition accuracy.Wavelet package transform is used for signal processing to understand bone-cutting phenomena using sound signals.The proposed system succeeds to monitor the bone milling process to reduce the surgical risk.Experiments on standard bone specimens and vertebrae also indicate that the proposed approach has considerable potential for use in computer-assisted and robot-assisted bone-cutting systems used in various types of surgery. 展开更多
关键词 cutting state FORCE milling Artificial neural network
下载PDF
The Extraction Method of Cutting Engagement in Ball-end Milling Simulation
18
作者 LIU Yin, ZHENG Li, LI Zhi-zhong (The Dept. of Industrial Engineering, Tsinghua University, Beijing 100 084, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期87-88,共2页
Ball-end mill is widely used in workpiece processi ng with free-form surfaces. Such models that can predict processing character istics precisely are very necessary to the aim of cost reducing, quality improvi ng and ... Ball-end mill is widely used in workpiece processi ng with free-form surfaces. Such models that can predict processing character istics precisely are very necessary to the aim of cost reducing, quality improvi ng and productivity progressing, the cutting force prediction is the most import ant among these models. To explore the physical essence of metal cutting, model researchers commonly simplify the geometric conditions in cutting process, and a ssume that the geometric parameters that are needed to solve the physical models have already been predefined, so it results in the separation between model res earch and practical application. In this paper, for the representative cutting f orce models of ball end milling, a new extraction method of geometric parameters is suggested, which makes it possible for physical model to actually serve for the practical manufacturing, and take in the inspection of real production. 展开更多
关键词 milling simulation ball-end milling cutting en gagement solid model
下载PDF
Wear Patterns and Mechanisms of Cutting Tools in High Speed Face Milling
19
作者 LIU Zhan-qiang, AI Xing, ZHANG Hui, WANG Zun-tong, WAN Yi (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期58-,共1页
High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due... High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes. 展开更多
关键词 cutting tool WEAR high speed machining face milling
下载PDF
Cutting Characteristics of Force Controllable Milling Head
20
作者 Shirakashi Takahiro Shibuya Wataru 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期108-,共1页
In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction re... In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cutting force and its locus can be also changed by the selection of the ratio of up/down cutting depth. For practical usage of the head the analytical prediction method of the cutting forc e characteristics under selected cutting condition was proposed based on the ene rgy approach method proposed, in which both of cutting force characteristics of a single milling cutter and the combined milling cutter under a selected up/dow n cutting depth ratio were analytically estimated based on the two dimensional c utting data. It was experimentally shown that in NC milling machine the cutting force locus was controlled in pre-determined direction under various tool paths . 展开更多
关键词 cutting Characteristics of Force Controllable milling Head
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部