The problem of improving the performance of min-sum decoding of low-density parity-check (LDPC) codes is considered in this paper. Based on min-sum algorithm, a novel modified min-sum decoding algorithm for LDPC cod...The problem of improving the performance of min-sum decoding of low-density parity-check (LDPC) codes is considered in this paper. Based on min-sum algorithm, a novel modified min-sum decoding algorithm for LDPC codes is proposed. The proposed algorithm modifies the variable node message in the iteration process by averaging the new message and previous message if their signs are different. Compared with the standard min-sum algorithm, the modification is achieved with only a small increase in complexity, but significantly improves decoding performance for both regular and irregular LDPC codes. Simulation results show that the performance of our modified decoding algorithm is very close to that of the standard sum-product algorithm for moderate length LDPC codes.展开更多
针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和...针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。展开更多
通过信道极化,极化码理论上证明可渐进达到香农限。文中研究极化码在高斯信道下的串行抵消(successive cancellation,SC)译码算法,提出了一种基于整数操作的最小和译码算法。算法中信道输出值被均匀量化后再取整数,作为SC译码器的输入;...通过信道极化,极化码理论上证明可渐进达到香农限。文中研究极化码在高斯信道下的串行抵消(successive cancellation,SC)译码算法,提出了一种基于整数操作的最小和译码算法。算法中信道输出值被均匀量化后再取整数,作为SC译码器的输入;节点更新使用最小和算法,更新过程不需要量化操作,直接使用信道输出值量化后的整数值。数值仿真结果表明,在信噪比小于4 d B时,译码性能与基于浮点运算的原始SC译码一致;当误比特率为10-5时,提出的算法与原始SC译码的信噪比相差0.2 d B。所提出的算法便于硬件实现,运算中变量的大小都用8比特整数表示。展开更多
为了提高低密度奇偶校验(LDPC)码的单最小值最小和(single-minimum Min-Sum,sm MS)算法的误码性能,提出了一种基于变量节点LLR(Log Likelihood Ratio)消息加权的改进最小和(Improved Min Sum algorithm based on weighted message LLR o...为了提高低密度奇偶校验(LDPC)码的单最小值最小和(single-minimum Min-Sum,sm MS)算法的误码性能,提出了一种基于变量节点LLR(Log Likelihood Ratio)消息加权的改进最小和(Improved Min Sum algorithm based on weighted message LLR of variable nodes,IMS-WVN)算法。首先,将迭代次数所确定的次小值的估值参数与最小值相加后取代次小值,以增强sm MS算法校验节点的可靠度。然后,将变量节点输出LLR消息与迭代前LLR消息进行加权处理,降低变量节点的振荡幅度,降低平均译码迭代次数。仿真结果表明,在信噪比为3.2 d B时,IMS-WVN算法的误码性能比VWMS算法提升0.53 d B,当误码率为10-5时,IMS-WVN算法平均译码迭代次数较MS算法减少58%。展开更多
提出一种简单高效的GF(q)-LDPC码译码算法,将对数似然比和积译码算法中的雅可比对数利用一阶泰勒级数近似,从而降低译码时校验点计算的复杂度.与目前广泛应用的O ffset m in-sum算法相比较,在BER为10-4处性能有0.2 dB左右的提升,并且本...提出一种简单高效的GF(q)-LDPC码译码算法,将对数似然比和积译码算法中的雅可比对数利用一阶泰勒级数近似,从而降低译码时校验点计算的复杂度.与目前广泛应用的O ffset m in-sum算法相比较,在BER为10-4处性能有0.2 dB左右的提升,并且本算法中的参数设计独立于有限域的阶数.展开更多
基金supported by the Major State Basic Research Development Program of China (2009CB320300)
文摘The problem of improving the performance of min-sum decoding of low-density parity-check (LDPC) codes is considered in this paper. Based on min-sum algorithm, a novel modified min-sum decoding algorithm for LDPC codes is proposed. The proposed algorithm modifies the variable node message in the iteration process by averaging the new message and previous message if their signs are different. Compared with the standard min-sum algorithm, the modification is achieved with only a small increase in complexity, but significantly improves decoding performance for both regular and irregular LDPC codes. Simulation results show that the performance of our modified decoding algorithm is very close to that of the standard sum-product algorithm for moderate length LDPC codes.
文摘针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。
文摘通过信道极化,极化码理论上证明可渐进达到香农限。文中研究极化码在高斯信道下的串行抵消(successive cancellation,SC)译码算法,提出了一种基于整数操作的最小和译码算法。算法中信道输出值被均匀量化后再取整数,作为SC译码器的输入;节点更新使用最小和算法,更新过程不需要量化操作,直接使用信道输出值量化后的整数值。数值仿真结果表明,在信噪比小于4 d B时,译码性能与基于浮点运算的原始SC译码一致;当误比特率为10-5时,提出的算法与原始SC译码的信噪比相差0.2 d B。所提出的算法便于硬件实现,运算中变量的大小都用8比特整数表示。
文摘为了提高低密度奇偶校验(LDPC)码的单最小值最小和(single-minimum Min-Sum,sm MS)算法的误码性能,提出了一种基于变量节点LLR(Log Likelihood Ratio)消息加权的改进最小和(Improved Min Sum algorithm based on weighted message LLR of variable nodes,IMS-WVN)算法。首先,将迭代次数所确定的次小值的估值参数与最小值相加后取代次小值,以增强sm MS算法校验节点的可靠度。然后,将变量节点输出LLR消息与迭代前LLR消息进行加权处理,降低变量节点的振荡幅度,降低平均译码迭代次数。仿真结果表明,在信噪比为3.2 d B时,IMS-WVN算法的误码性能比VWMS算法提升0.53 d B,当误码率为10-5时,IMS-WVN算法平均译码迭代次数较MS算法减少58%。