Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak e...Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle.The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions(MPS)to solve the governing equations numerically.It is confirmed that for the present bending model,the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points.The effects of different boundary conditions,applied loads,and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method.Some important conclusions are drawn,which should be helpful for the design and applications of electromagnetic nanoplate structures.展开更多
A analyzed model of gear with wheel hub, web and rim was derived from the Mindlin moderate plate theory. The gear was divided into three annular segments along the locations of the step variations. Traverse displaceme...A analyzed model of gear with wheel hub, web and rim was derived from the Mindlin moderate plate theory. The gear was divided into three annular segments along the locations of the step variations. Traverse displacement, rotation angle, shear force and fiexural moment were equal to ensure the continuity along the interface of the wheel hub, web and rim segments. The governing differential equations for harmonic vibration of annular segments were derived to solve the gear vibration problem. The influence of hole to diameter ratios, segment thickness ratios, segment location ratios, Poisson ratio on the vibration behavior of stepped circular Mindlin disk were calculated, tabletted and plotted. Comparisons were made with the frequencies arising from the presented method, finite elements method, and structure modal experiment. The result correlation among these three ways is very good. The largest error for all frequencies is 5.46%, and less than 5% for most frequencies.展开更多
To solve the design problem of transformer composed of non-resonant structure in ultrasonic gear-honing, force coupling conditions for moderately thick annular plate (MTAP) and catenary horn are proposed, and the fr...To solve the design problem of transformer composed of non-resonant structure in ultrasonic gear-honing, force coupling conditions for moderately thick annular plate (MTAP) and catenary horn are proposed, and the frequency equations of the transformer, which consist of an MTAP and a catenary horn, are derived based on Mindlin's theory. The design parameters of the transformer were obtained by solving the frequency equations with the help of MATLAB, and its mode and frequency were deduced by the modal analysis of finite element method (FEM), which are consistent with the theoretical design demands. The transformer design can be extended from system with thin annular plate to that with MTAP as the theoretical method by the simulation analysis of various ratios of the thickness to radius.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11872257 and 11572358)the German Research Foundation(No.ZH 15/14-1)。
文摘Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle.The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions(MPS)to solve the governing equations numerically.It is confirmed that for the present bending model,the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points.The effects of different boundary conditions,applied loads,and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method.Some important conclusions are drawn,which should be helpful for the design and applications of electromagnetic nanoplate structures.
基金Foundation item: Project(50975191) supported by the National Natural Science Foundation of China Project(20113027) supported by the Outstanding Innovation Project of Shanxi Province Foundation for Graduate Student
文摘A analyzed model of gear with wheel hub, web and rim was derived from the Mindlin moderate plate theory. The gear was divided into three annular segments along the locations of the step variations. Traverse displacement, rotation angle, shear force and fiexural moment were equal to ensure the continuity along the interface of the wheel hub, web and rim segments. The governing differential equations for harmonic vibration of annular segments were derived to solve the gear vibration problem. The influence of hole to diameter ratios, segment thickness ratios, segment location ratios, Poisson ratio on the vibration behavior of stepped circular Mindlin disk were calculated, tabletted and plotted. Comparisons were made with the frequencies arising from the presented method, finite elements method, and structure modal experiment. The result correlation among these three ways is very good. The largest error for all frequencies is 5.46%, and less than 5% for most frequencies.
基金Supported by the National Natural Science Foundation of China (50975191)the Innovation and Entrepreneurial Projects for College Students of Taiyuan (110148050)
文摘To solve the design problem of transformer composed of non-resonant structure in ultrasonic gear-honing, force coupling conditions for moderately thick annular plate (MTAP) and catenary horn are proposed, and the frequency equations of the transformer, which consist of an MTAP and a catenary horn, are derived based on Mindlin's theory. The design parameters of the transformer were obtained by solving the frequency equations with the help of MATLAB, and its mode and frequency were deduced by the modal analysis of finite element method (FEM), which are consistent with the theoretical design demands. The transformer design can be extended from system with thin annular plate to that with MTAP as the theoretical method by the simulation analysis of various ratios of the thickness to radius.