Urban indoor substations are widely used for electrical power distribution in urban networks. However, they have the problems of heat dissipation and ventilation in main transformer room, which not only influence the ...Urban indoor substations are widely used for electrical power distribution in urban networks. However, they have the problems of heat dissipation and ventilation in main transformer room, which not only influence the thermal behavior of main transformer, but also decrease the lifetime, reliability, and precision of other electronic equipment. In this contribution, we developed a new ventilation optimization method based on the variational method to solve the aforementioned problems. First, we applied the minimum average temperature of indoor air as the optimization objective combined with some constrains to establish a Lagrange function, and employed the variational method to deduce some optimized governing equations that the optimum indoor patterns should meet the minimum indoor air average temperature. Finally, a typical main transformer room model was taken as an example to demonstrate the applications of the newly developed ventilation optimization method. It was concluded that the inflowing fresh air needed to sweep more area of heating walls to take away more heat, and reduce the average temperature of indoor air. Furthermore, based on the optimized air velocity distribution, we redesigned the ventilation arrangements and reduced the indoor average temperature prominently(from 337.44 K to 314.82 K), which can provide the guidance to design the ventilation of main transformer room to improve the reliability of electronic equipment in main transformer room.展开更多
The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects ...The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects the accuracy of the late exploration data interpretation. In this study, we propose a method to separate the main part from the anomalous field of marine controlled-source electromagnetic method (MCSEM) data based on Stratton-Chu integral transforms to eliminate the airwave effect, which dominates observed electromagnetic (EM) response in shallow seawater. This method of separating the main part from the anomalous field is a type of finite impulse response filter based on a discrete data set. Theoretical analysis proved that the method is stable and able to effectively depress noise. A numerical test indicated that the method could successfully eliminate the airwave effect from the observed EM signals generated by an air water interface and a seawater layer. This technique is applicable for seawater models with either flat or rough seabeds.展开更多
Fire-driven flow analysis in the underground subway station has been performed with various main tunnel ventilations. Shin-gum-ho station (depth: 46 m) in Seoul is selected as a simulation model. The ventilation mo...Fire-driven flow analysis in the underground subway station has been performed with various main tunnel ventilations. Shin-gum-ho station (depth: 46 m) in Seoul is selected as a simulation model. The ventilation mode is assumed to be emergency state. Various main tunnel ventilations are applied to operate in a proper way for helping of smoke exhaustion in platform. The entire station is covered for simulation. Ventilation diffusers are modeled as 95 square shapes of 0.6 m × 0.6 m in the lobby and as 222 square shapes of 0.6 m × 0.6 m and four rectangular shapes of 1.2 m × 0.8 m in the platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for MPI (massage passing interface) efficiency of calculation. LES (large eddy simulation) is applied to solve the momentum equation. Smagorinsky model (Cs = 0.2) is used as SGS (subgrid scale) model. The distribution of CO (carbon monoxide) is calculated for various capacity of main tunnel ventilation and compared with each other.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51706072)the Fundamental Research Funds for the Central Universities, China (Grant No.2018MS102)
文摘Urban indoor substations are widely used for electrical power distribution in urban networks. However, they have the problems of heat dissipation and ventilation in main transformer room, which not only influence the thermal behavior of main transformer, but also decrease the lifetime, reliability, and precision of other electronic equipment. In this contribution, we developed a new ventilation optimization method based on the variational method to solve the aforementioned problems. First, we applied the minimum average temperature of indoor air as the optimization objective combined with some constrains to establish a Lagrange function, and employed the variational method to deduce some optimized governing equations that the optimum indoor patterns should meet the minimum indoor air average temperature. Finally, a typical main transformer room model was taken as an example to demonstrate the applications of the newly developed ventilation optimization method. It was concluded that the inflowing fresh air needed to sweep more area of heating walls to take away more heat, and reduce the average temperature of indoor air. Furthermore, based on the optimized air velocity distribution, we redesigned the ventilation arrangements and reduced the indoor average temperature prominently(from 337.44 K to 314.82 K), which can provide the guidance to design the ventilation of main transformer room to improve the reliability of electronic equipment in main transformer room.
基金supported by the National Natural Science Foundation of China(No.41574067)863 Program(No.2012AA09A404)
文摘The airwave effect greatly influences the observational data from controlledsource electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects the accuracy of the late exploration data interpretation. In this study, we propose a method to separate the main part from the anomalous field of marine controlled-source electromagnetic method (MCSEM) data based on Stratton-Chu integral transforms to eliminate the airwave effect, which dominates observed electromagnetic (EM) response in shallow seawater. This method of separating the main part from the anomalous field is a type of finite impulse response filter based on a discrete data set. Theoretical analysis proved that the method is stable and able to effectively depress noise. A numerical test indicated that the method could successfully eliminate the airwave effect from the observed EM signals generated by an air water interface and a seawater layer. This technique is applicable for seawater models with either flat or rough seabeds.
文摘Fire-driven flow analysis in the underground subway station has been performed with various main tunnel ventilations. Shin-gum-ho station (depth: 46 m) in Seoul is selected as a simulation model. The ventilation mode is assumed to be emergency state. Various main tunnel ventilations are applied to operate in a proper way for helping of smoke exhaustion in platform. The entire station is covered for simulation. Ventilation diffusers are modeled as 95 square shapes of 0.6 m × 0.6 m in the lobby and as 222 square shapes of 0.6 m × 0.6 m and four rectangular shapes of 1.2 m × 0.8 m in the platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for MPI (massage passing interface) efficiency of calculation. LES (large eddy simulation) is applied to solve the momentum equation. Smagorinsky model (Cs = 0.2) is used as SGS (subgrid scale) model. The distribution of CO (carbon monoxide) is calculated for various capacity of main tunnel ventilation and compared with each other.
文摘随着分布式光伏等新能源接入电网的规模快速增长,给新能源电力汇聚、疏散、消纳和电网潮流优化控制带来严峻挑战。基于电力电子技术的柔性交流输电系统装置可有效提升输电网络的传输容量,由大容量Sen变压器(sen transformer,ST)和小容量统一潮流控制器(unified power flow controller,UPFC)组成的混合式潮流控制器(hybrid unified power flow controller,HPFC)在实现潮流连续调节的基础上,能够有效提升装置的经济性,具有很好的应用前景。为了确保HPFC调节潮流的准确性和可靠性,给出了HPFC容量分配的一般性方法及其主电路参数确定方法;为解决ST机械有载分接开关和UPFC电力电子开关二者响应速度的协调问题,提出了一种基于预测电流控制的潮流控制策略,并在Simulink中搭建220 kV双回线路及三机九节点系统进行仿真。仿真结果验证了HPFC容量分配方法正确有效,且预测电流控制策略能够合理计算抽头位置,减缓过渡电流对HPFC控制系统的冲击,使系统功率快速调节至目标值。