The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation base...The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation based on in-situ measurements and observations of the longwall working as well as numerical simulation.The calculations included several parameters,such as powered roof support geometry in the form of the canopy ratio,which is a factor that influences load distribution along the canopy.Numerical simulations were realized based on a rock mass model representing realistic mining and geological conditions at a depth of 600 m below surface for coal seam A.Numerical model assumptions are described,while the obtained results were compared with the in-situ measurements.The conclusions drawn from this work can complement engineering knowledge utilized at the stage of powered roof support construction and selection in order to improve both personnel safety and longwall working stability,and to achieve better extraction.展开更多
For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by ...For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts.展开更多
In order to access remote reserve areas, some U.S.coal mines have to maintain aged underground entries for a great distance.However, high humidity, warm temperature, and time dependent deterioration can cause progress...In order to access remote reserve areas, some U.S.coal mines have to maintain aged underground entries for a great distance.However, high humidity, warm temperature, and time dependent deterioration can cause progressive roof deterioration and unexpected roof falls, and pose a great challenge to ground control engineers.With an active belt structure in place and limited space, re-bolting becomes very costly, less effective,and, sometimes, impractical and unfeasible.To gain long-term entry stability and serviceability, operators typically rehabilitate the aged belt entries by installing standing steel set supports.In the last several years,Keystone Mining Services, LLC,(KMS) has assisted many coal mines with their belt entry rehabilitation projects, evaluated the ground condition of various aged belt entries, and designed different standing steel set support systems.This paper presents a case study of a large-scale roof fall that occurred at an aged belt entry in a mine located in an eastern coalfield, analyzes root causes of excessive deformation of square sets that were installed in an adjacent entry, evaluates the adequacy of an existing rehabilitation square set, and develops remedial recommendations for future rehabilitation practice.Based on the case study, the paper outlines design guidelines for rehabilitation steel sets that include field evaluation, engineering considerations, design assumptions, steel structural analysis, and field installation quality control.展开更多
基金research conducted within the Research Project:Productivity and Safety of Shield Support(PRASS Ⅲ)-co-financed by European Commission-Research Fund for Coal and Steel(No.752504)and Polish Ministry of Science and Higher Education
文摘The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation based on in-situ measurements and observations of the longwall working as well as numerical simulation.The calculations included several parameters,such as powered roof support geometry in the form of the canopy ratio,which is a factor that influences load distribution along the canopy.Numerical simulations were realized based on a rock mass model representing realistic mining and geological conditions at a depth of 600 m below surface for coal seam A.Numerical model assumptions are described,while the obtained results were compared with the in-situ measurements.The conclusions drawn from this work can complement engineering knowledge utilized at the stage of powered roof support construction and selection in order to improve both personnel safety and longwall working stability,and to achieve better extraction.
文摘For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts.
文摘In order to access remote reserve areas, some U.S.coal mines have to maintain aged underground entries for a great distance.However, high humidity, warm temperature, and time dependent deterioration can cause progressive roof deterioration and unexpected roof falls, and pose a great challenge to ground control engineers.With an active belt structure in place and limited space, re-bolting becomes very costly, less effective,and, sometimes, impractical and unfeasible.To gain long-term entry stability and serviceability, operators typically rehabilitate the aged belt entries by installing standing steel set supports.In the last several years,Keystone Mining Services, LLC,(KMS) has assisted many coal mines with their belt entry rehabilitation projects, evaluated the ground condition of various aged belt entries, and designed different standing steel set support systems.This paper presents a case study of a large-scale roof fall that occurred at an aged belt entry in a mine located in an eastern coalfield, analyzes root causes of excessive deformation of square sets that were installed in an adjacent entry, evaluates the adequacy of an existing rehabilitation square set, and develops remedial recommendations for future rehabilitation practice.Based on the case study, the paper outlines design guidelines for rehabilitation steel sets that include field evaluation, engineering considerations, design assumptions, steel structural analysis, and field installation quality control.