A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation informat...A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.展开更多
In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flo...In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flow field and velocity field around the hoist equipment during its moving process, and analyzed the airflow around single and couple hoist equipment as well as decisive range of piston effect and additional effect of hoist equipment to ventilation system. Research conclusion indicate that during hoist equipment movement, airflow pattern changes repeatedly because of the influence of pis-ton effect from hoist equipment, and the study of airflow stability in shaft is the foundation for the stability of ventilation in mine.展开更多
基金Projects(2013RC16,2012LWB28)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(NCET-13-1019)supported by the Program for New Century Excellent Talents in University,China
文摘A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.
文摘以云南某矿山超深井衬砌支护为工程背景,对不同掺配方案、不同标号的钢纤维混凝土试样进行动态冲击试验,并采用数字图像相关技术分析了冲击荷载下试样表面的应变场演化.试验结果表明:三掺钢纤维混凝土动态抗压强度和耗散能占比大于单掺和双掺钢纤维混凝土;素混凝土的动态强度越小,掺配钢纤维后混凝土试样的动态强度提升越显著.采用高速摄像机记录了钢纤维混凝土试样的破坏全过程,试样破坏模式受混凝土标号和钢纤维掺配方案控制,可分为剪切、劈裂和剪切–劈裂复合型破坏.与素混凝土试样相比,钢纤维混凝土试样在冲击荷载下的裂纹数量减少,反射能占比更低,透射能和耗散能占比更高,表明钢纤维能有效抑制裂纹萌生扩展,增强井壁混凝土的稳定性.钢纤维混凝土试样的非破坏性冲击试验结果显示三掺钢纤维方案能够最大程度抑制混凝土在冲击荷载下的损伤.最终建议该矿山深部竖井衬砌支护采用混凝土标号为C50,钢纤维的掺配方案为每立方素混凝土掺配端钩型长纤维40 kg、镀铜平直型中长纤维5 kg以及短镀铜平直型短纤维10 kg.
基金Supported by Natural Science Foundation of China (50474062) and State Administration of Coal Mine Safety of China (04-233)
文摘In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flow field and velocity field around the hoist equipment during its moving process, and analyzed the airflow around single and couple hoist equipment as well as decisive range of piston effect and additional effect of hoist equipment to ventilation system. Research conclusion indicate that during hoist equipment movement, airflow pattern changes repeatedly because of the influence of pis-ton effect from hoist equipment, and the study of airflow stability in shaft is the foundation for the stability of ventilation in mine.