Stability assessment is one of the most important issues in mining ground control. Mine development and/or production instability can cause production delay, loss of reserves, as well as injury to miners. Within the s...Stability assessment is one of the most important issues in mining ground control. Mine development and/or production instability can cause production delay, loss of reserves, as well as injury to miners. Within the scope of this study, a series of open stope’s instability under the influence of overlaying mined-out regions were carried out with different mining scenarios at Modi Taung gold mine which is operated by National Prosperity Gold Production Group Limited (NPGPGL) in Myanmar. NPGPGL has been developing stopes up to 150 m from the surface at Shwesin vein system, and the mining activities are going to continue to deeper levels to fulfill the ore mineral supply. Creating a new stope opening under overlaying mined-out regions is not easy considering the instability of mined-out regions can affect the stope. The instability of new stope opening is not only due to its own induced stress but also the strong influence by the mined-out regions situated on upper part of the stope. Therefore, the understandings of ground behaviors and failure mechanisms of new stope opening due to the influence of overlaying mined-out regions are paramount to be studied. This paper describes in detail the strength factor and failure zones under the overlaying mined-out regions with different mine conditions by using numerical simulations, 3D finite difference software (FLAC 3D).展开更多
Backflling represents an environmentally friendly mining waste disposal technique.It is increasingly used in underground mines all over the world.However,its primary purpose remains to improve ground stability and to ...Backflling represents an environmentally friendly mining waste disposal technique.It is increasingly used in underground mines all over the world.However,its primary purpose remains to improve ground stability and to reduce ore dilution.Previous investigations have shown that fll drainage plays a key role in backfll and barricade design.With a poor drainage system in the backflled stope,the required dimension of barricade,which is constructed at the base of the stope near the drift entrance,has to be increased.A poor backfll drainage system can also lead to a signifcant increase in drainage waiting time and further reduction in mining productivity.In this paper,the drainage of conventional backfll design in backflled stopes is briefly reviewed.For the frst time,the application of the wick drain is introduced in the backfll within mine stopes.The drainage improvement from the introduction of the wick drain is illustrated using numerical modeling.展开更多
文摘Stability assessment is one of the most important issues in mining ground control. Mine development and/or production instability can cause production delay, loss of reserves, as well as injury to miners. Within the scope of this study, a series of open stope’s instability under the influence of overlaying mined-out regions were carried out with different mining scenarios at Modi Taung gold mine which is operated by National Prosperity Gold Production Group Limited (NPGPGL) in Myanmar. NPGPGL has been developing stopes up to 150 m from the surface at Shwesin vein system, and the mining activities are going to continue to deeper levels to fulfill the ore mineral supply. Creating a new stope opening under overlaying mined-out regions is not easy considering the instability of mined-out regions can affect the stope. The instability of new stope opening is not only due to its own induced stress but also the strong influence by the mined-out regions situated on upper part of the stope. Therefore, the understandings of ground behaviors and failure mechanisms of new stope opening due to the influence of overlaying mined-out regions are paramount to be studied. This paper describes in detail the strength factor and failure zones under the overlaying mined-out regions with different mine conditions by using numerical simulations, 3D finite difference software (FLAC 3D).
基金the financial support of School of Advanced Technology(FIRPSIRE-research+1 种基金FDETS)the Natural Sciences and Engineering Research Council of Canada(RGPIN)
文摘Backflling represents an environmentally friendly mining waste disposal technique.It is increasingly used in underground mines all over the world.However,its primary purpose remains to improve ground stability and to reduce ore dilution.Previous investigations have shown that fll drainage plays a key role in backfll and barricade design.With a poor drainage system in the backflled stope,the required dimension of barricade,which is constructed at the base of the stope near the drift entrance,has to be increased.A poor backfll drainage system can also lead to a signifcant increase in drainage waiting time and further reduction in mining productivity.In this paper,the drainage of conventional backfll design in backflled stopes is briefly reviewed.For the frst time,the application of the wick drain is introduced in the backfll within mine stopes.The drainage improvement from the introduction of the wick drain is illustrated using numerical modeling.