We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power...We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.展开更多
Agonist binding of A2A adenosine receptor (A2AAR) shows protective effects against inflammatory and immune. Efforts are exerted in understanding the general mechanism and developing A2AAR selectively binding agonist...Agonist binding of A2A adenosine receptor (A2AAR) shows protective effects against inflammatory and immune. Efforts are exerted in understanding the general mechanism and developing A2AAR selectively binding agonists. Using molecular dynamics (MD) simula- tions, we have studied the interactions between A2AAR and its agonist (adenosine), and analyzed the induced dynamic behaviors of the receptor. Key residues interacting with adenosine are identified: A63^2.61,I66^2.64,V84^3.32,L85^3.33,T88^3.36,F168^5.29,M177^5.38,L249^6.51,H250^6.52 and N253^6.55 interacting with adenosine with affinities larger than 0.5 kcal/mol. Moreover, no interaction between adenosine and L167^5.28 is observed, which supports our previous findings that L1675^5.28 is an antagonist specific binding reside. The dynamic be- haviors of agonist bound A2AAR are found to be different from apo-A2AAR in three typical functional switches: (i) tight "ionic lock" forms in adenosine-A2AAR, but it is in equilibrium between formation and breakage in apo-A2AAR; (ii) the "rotamer toggle switch", T88^3.36/F242^6.44/W246^6.48, adopted different rotameric conformations in adenosin-A2AAR and apo-A2AAR; (iii) adenosine-A2AAR has a flexible intracellular loop 2 (IC2) and s-helical IC3, while apo-A2AAR preferred s-helical IC2 and flexible IC3. Our results indicate that agonist binding induced different conformational rearrangements of these characteristic functional switches in adenosine-A2AAR and apo-A2AAR.展开更多
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and op...As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out.展开更多
In recent years, topological insulators have aroused the attention of a great number of scientists due to their unique electronic structures and peculiar physical properties. Triggered by the similar electronic struct...In recent years, topological insulators have aroused the attention of a great number of scientists due to their unique electronic structures and peculiar physical properties. Triggered by the similar electronic structures as graphene, the broadband nonlinear absorption properties of topological insulator were investigated. Moreover, the mode-locked or Q-switched fiber lasers based on topological insulator were realized for broadband operating wavelength. Here, we present an overview of the preparation, transferring, linear and nonlinear optical properties and their applications of topological insulators in pulsed fiber lasers. The pulsed fiber lasers towards mid- infrared regimes have been proposed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60278024 and 60438020).
文摘We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.
文摘Agonist binding of A2A adenosine receptor (A2AAR) shows protective effects against inflammatory and immune. Efforts are exerted in understanding the general mechanism and developing A2AAR selectively binding agonists. Using molecular dynamics (MD) simula- tions, we have studied the interactions between A2AAR and its agonist (adenosine), and analyzed the induced dynamic behaviors of the receptor. Key residues interacting with adenosine are identified: A63^2.61,I66^2.64,V84^3.32,L85^3.33,T88^3.36,F168^5.29,M177^5.38,L249^6.51,H250^6.52 and N253^6.55 interacting with adenosine with affinities larger than 0.5 kcal/mol. Moreover, no interaction between adenosine and L167^5.28 is observed, which supports our previous findings that L1675^5.28 is an antagonist specific binding reside. The dynamic be- haviors of agonist bound A2AAR are found to be different from apo-A2AAR in three typical functional switches: (i) tight "ionic lock" forms in adenosine-A2AAR, but it is in equilibrium between formation and breakage in apo-A2AAR; (ii) the "rotamer toggle switch", T88^3.36/F242^6.44/W246^6.48, adopted different rotameric conformations in adenosin-A2AAR and apo-A2AAR; (iii) adenosine-A2AAR has a flexible intracellular loop 2 (IC2) and s-helical IC3, while apo-A2AAR preferred s-helical IC2 and flexible IC3. Our results indicate that agonist binding induced different conformational rearrangements of these characteristic functional switches in adenosine-A2AAR and apo-A2AAR.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378025 and 61427812)the Shuangchuang Team Program of Jiangsu Province,China,the National Key Basic Research Program of China(Grant No.2014CB921101)the State Key Laboratory of Advanced Optical Communication Systems Networks,China
文摘As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out.
基金supported by the National Natural Science Foundation of China under Grant No.61475102
文摘In recent years, topological insulators have aroused the attention of a great number of scientists due to their unique electronic structures and peculiar physical properties. Triggered by the similar electronic structures as graphene, the broadband nonlinear absorption properties of topological insulator were investigated. Moreover, the mode-locked or Q-switched fiber lasers based on topological insulator were realized for broadband operating wavelength. Here, we present an overview of the preparation, transferring, linear and nonlinear optical properties and their applications of topological insulators in pulsed fiber lasers. The pulsed fiber lasers towards mid- infrared regimes have been proposed.