Computer simulation for materials processing needs a huge database containing a great deal of various physical properties of materials. In order to employ the accumulated large data on materials heat treatment in the ...Computer simulation for materials processing needs a huge database containing a great deal of various physical properties of materials. In order to employ the accumulated large data on materials heat treatment in the past years, it is significant to develop an intelligent database system. Based on the data mining technology for data analysis, an intelligent database web tool system of computer simulation for heat treatment process named as IndBASEweb-HT was built up. The architecture and the arithmetic of this system as well as its application were introduced.展开更多
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and po...Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.展开更多
文摘Computer simulation for materials processing needs a huge database containing a great deal of various physical properties of materials. In order to employ the accumulated large data on materials heat treatment in the past years, it is significant to develop an intelligent database system. Based on the data mining technology for data analysis, an intelligent database web tool system of computer simulation for heat treatment process named as IndBASEweb-HT was built up. The architecture and the arithmetic of this system as well as its application were introduced.
文摘Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.