期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush 被引量:4
1
作者 Xin Wang Zhimin Xu +3 位作者 Yajun Sun Jieming Zheng Chenghang Zhang Zhongwen Duan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期853-866,共14页
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D... As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%. 展开更多
关键词 mine water inrush Automatic monitoring Real-time warning Recognition model
下载PDF
Identification of Mine Water Inrush Source Based on PCA-BP Neural Network
2
作者 Mingcheng Ning Haifeng Lu 《International Journal of Geosciences》 2023年第8期710-718,共9页
It is of great significance to analyze the chemical indexes of mine water and develop a rapid identification system of water source, which can quickly and accurately distinguish the causes of water inrush and identify... It is of great significance to analyze the chemical indexes of mine water and develop a rapid identification system of water source, which can quickly and accurately distinguish the causes of water inrush and identify the source of water inrush, so as to reduce casualties and economic losses and prevent and control water inrush disasters. Taking Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> + K<sup>+</sup>, , , Cl<sup>-</sup>, pH value and TDS as discriminant indexes, the principal component analysis method was used to reduce the dimension of data, and the identification model of mine water inrush source based on PCA-BP neural network was established. 96 sets of data of different aquifers in Panxie mining area were selected for prediction analysis, and 20 sets of randomly selected data were tested, with an accuracy rate of 95%. The model can effectively reduce data redundancy, has a high recognition rate, and can accurately and quickly identify the water source of mine water inrush. 展开更多
关键词 mine water Inrush Analysis of Hydrochemical Characteristics Principal Component Analysis (PCA) Back Propagation Neural Networks water Source Identification
下载PDF
Application of HEMS cooling technology in deep mine heat hazard control 被引量:46
3
作者 HE Man-chao 《Mining Science and Technology》 EI CAS 2009年第3期269-275,共7页
This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully ... This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled. 展开更多
关键词 deep mine heat hazard mine classification mine water inrush heat hazard control model
下载PDF
Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards 被引量:17
4
作者 HE Manchao CAO Xiuling +4 位作者 XIE Qiao YANG Jiahua QI Ping YANG Qing CHEN Xueqian 《Mining Science and Technology》 EI CAS 2010年第1期20-27,共8页
As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co... As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method. 展开更多
关键词 cooling system heat resources in deep mine heat hazard control mine water inrush stepwise utilization
下载PDF
Working principle and application of HEMS with lack of a cold source 被引量:5
5
作者 Qi Ping He Manchao +1 位作者 Meng Li Chen Chen 《Mining Science and Technology》 EI CAS 2011年第3期433-438,共6页
With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the pr... With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the problem of mine cooling technologies at China and abroad and the actual conditions of a coal mine, we developed HEMS (High Temperature Exchange Machinery System) with inrushing mine water as the source of cold energy. Combined with the characteristics of a shortage of inrushing water in the coal mine, we proposed the Sanhejian model of HEMS with its lack of a cold source. The cooling engineer- ing construction, given the present conditions in the Sanhejian Coal Mine, consisted of two phases. In phase 1 horizontal water circulation was used as cold energy, while phase II was the geothermal utiliza- tion project. For the key equipment of HEMS-PT or HEMS-T, we provided the operational principle from theory and an actual application. Finally, we analyzed the operational effect of HEMS. After cooling, the temperature at the working face was below 30 ~C, which meets the national regulations. This system opens up new technology to solve the problem of deep mine heat hazards, which makes good sense in energy conservation and pollution reduction, improves the environment and realizes sustainable eco- nomic development. 展开更多
关键词 HEMS-PT/HEMS-Tlack of cold source mine water inrush Horizontal water circulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部