期刊文献+
共找到801篇文章
< 1 2 41 >
每页显示 20 50 100
Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade
1
作者 Haixia Kou Bowen Yang +2 位作者 Xuyao Zhang Xiaobo Yang Haibo Zhao 《Structural Durability & Health Monitoring》 EI 2024年第3期277-297,共21页
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio... Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade. 展开更多
关键词 composite laminate wind turbine blade sub-structure progressive damage analysis user material subroutine cohesive zone model
下载PDF
Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review 被引量:1
2
作者 Brett Holmberg Liang Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1474-1489,共16页
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou... The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology. 展开更多
关键词 cemented paste backfill cementitious composites interfacial transition zone fiber reinforcement MULTIPHYSICS induced curing pressure
下载PDF
A Modified Cohesive Zone Model for Simulation of Delamination Behavior in Laminated Composites 被引量:1
3
作者 WU Yitao LIAN Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第5期724-732,共9页
Considering the promotion effect of interlaminar normal tensile stress and the inhibition effect of interlaminar normal compressive stress,two kinds of elimination initial criteria were proposed in this paper.Based on... Considering the promotion effect of interlaminar normal tensile stress and the inhibition effect of interlaminar normal compressive stress,two kinds of elimination initial criteria were proposed in this paper.Based on these two delamination initial criteria,a modified cohesive zone model(CZM)was established to simulate the delamination behavior in laminated composites.Numerical simulations of double cantilever beam(DCB),mixed-mode bending(MMB)and end notched flexure(ENF)tests were conducted.The results show that the proposed model can do a better job than common ones when it is used to predict laminates’delamination under interlaminar compression stress.Moreover,a factor r,named cohesive strength coefficient,was defined in this paper on account of the difference between cohesive strength and interlaminar fracture strength.With changing factor r,it shows that a moderate variation of cohesive strength will not cause significant influences on global load-displacement responses.Besides,in order to obtain a good balance between prediction accuracy and computational efficiency,there shall be two or three numerical elements within the cohesive zone. 展开更多
关键词 composite LAMINATE DELAMINATION NUMERICAL analysis COHESIVE zone model
下载PDF
Oxidation mechanism of high-volume fraction SiCp/Al composite under laser irradiation and subsequent machining
4
作者 Hanliang Liu Guolong Zhao +5 位作者 Zhiwen Nian Zhipeng Huang Kai Yang Conghua Liu Peng Wang Zhenkuan Diao 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期34-47,共14页
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra... Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality. 展开更多
关键词 SiCp/Al composite Oxidation mechanism Nanosecond pulsed laser Laser-induced oxidation Heat-affected zone
下载PDF
Modeling and Software Development of the Interfacial Transition Zone of Ellipsoidal Aggregate in Cement-Based Composites 被引量:1
5
作者 ZHANG Jianjian SUN Guowen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期648-655,共8页
The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete unders... The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete understanding and a quantitative modeling of ITZ are still lacking. Consequently, an integrated modeling and experimental study were conducted. First, the theoretical calculation model of the ITZ volume fraction about the rotary ellipsoidal aggregate particles was established based on the nearest surface function formula. Its calculation programs were written based on Visual Basic 6.0 language and achieved visualization and functionalization. Then, the influencing factors of ITZ volume fraction of the ellipsoidal aggregate particles and the overlapping degree between the ITZ were systematically analyzed. Finally, the calculation models of ITZ volume fraction on actual ellipsoidal aggregate were given, based on cobblestones or pebbles particles with naturally ellipsoidal shape. The results indicate that the calculation model proposed is highly reliable. 展开更多
关键词 INTERFACIAL transition zone (ITZ) CEMENT-BASED composites ellipsoidal AGGREGATE volume FRACTION visualization software development
下载PDF
Finite element simulation of the micromachining of nanosized-silicon-carbide-particle reinforced composite materials based on the cohesive zone model
6
作者 Hongmin Pen Jianhua Guo +2 位作者 Zizhen Cao Xianchong Wang Zhiguo Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第4期242-247,共6页
A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale sim... A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale simulation method, the parameters for the cohesive zone model were obtained from the stress-displacement curves of the molecular dynamics simulation. The model considers the random properties of the siliconcarbide-particle distribution and the interface of bonding between the silicon carbide particles and the matrix.The machining mechanics was analyzed according to the chip morphology, stress distribution, cutting temperature, and cutting force. The simulation results revealed that the random distribution of nanosized SiCp causes non-uniform interaction between the tool and the reinforcement particles. This deformation mechanics leads to inhomogeneous stress distribution and irregular cutting force variation. 展开更多
关键词 Multiscale COHESIVE zone model NANOSIZED silicon carbide particles composite MATERIALS MICROMACHINING
下载PDF
INTERFACE DAMAGE ANALYSIS OF FIBER REINFORCED COMPOSITES WITH DUCTILE MATRIX 被引量:1
7
作者 周储伟 王鑫伟 +1 位作者 杨卫 方岱宁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期119-123,共5页
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi... A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs. 展开更多
关键词 fiber reinforced composite micro mechanics cohesive zone model interface damage tensile strength
下载PDF
Numerical Simulation of Particle/Matrix Interface Failure in Composite Propellant 被引量:6
8
作者 常武军 鞠玉涛 +2 位作者 韩波 胡少青 王政时 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第3期146-153,共8页
Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its mi... Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants. 展开更多
关键词 propulsion system of aviation and aerospace interface debonding cohesive zone model composite propellant cohesive element damage evolution
下载PDF
Progressive Failure Evaluation of Composite Skin-Stiffener Joints Using Node to Surface Interactions and CZM 被引量:5
9
作者 A.Sane P.M.Padole R.V.Uddanwadiker 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第5期281-294,共14页
T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions ... T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment. 展开更多
关键词 Carbon fiber composite FE analysis T-JOINT COHESIVE zone modeling NODE to surface interactions
下载PDF
3D Nonlinear XFEM Simulation of Delamination in Unidirectional Composite Laminates: A Sensitivity Analysis of Modeling Parameters 被引量:3
10
作者 Damoon Motamedi Abbas S. Milani 《Open Journal of Composite Materials》 2013年第4期113-126,共14页
This article presents a three-dimensional extended finite element (XFEM) approach for numerical simulation of delamination in unidirectional composites under fracture mode I. A cohesive zone model in front of the crac... This article presents a three-dimensional extended finite element (XFEM) approach for numerical simulation of delamination in unidirectional composites under fracture mode I. A cohesive zone model in front of the crack tip is used to include interface material nonlinearities. To avoid instability during simulations, a critical cohesive zone length is defined such that user-defined XFEM elements are only activated along the crack tip inside this zone. To demonstrate the accuracy of the new approach, XFEM results are compared to a set of benchmark experimental data from the literature as well as conventional FEM, mesh free, and interface element approaches. To evaluate the effect of modeling parameters, a set of sensitivity analyses have also been performed on the penalty stiffness factor, critical cohesive zone length, and mesh size. It has been discussed how the same model can be used for other fracture modes when both opening and contact mechanisms are active. 展开更多
关键词 composite Materials Fracture Properties Double CANTILEVER Beam Extended Finite Element COHESIVE zone Model
下载PDF
Characteristics of Compositional Migration in Mylonites from the Ductile Shear Zones of the Southern Tancheng-Lujiang Fault Belt, Eastern Anhui Province 被引量:1
11
作者 YANG Xiaoyong LUI Deliang +2 位作者 YANG Xueming WANG Kuiren DAI Jinxing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1998年第1期37-50,共14页
On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collec... On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones. 展开更多
关键词 MYLONITE ductile shear zones volume loss fluid-rock interaction compositional migration Tancheng-Lujiang fault belt
下载PDF
The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean 被引量:1
12
作者 Qiqi SUN Jinming SONG +2 位作者 Xuegang LI Huamao YUAN Qidong WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1690-1704,共15页
The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community compos... The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community composition(repre sented by 16 S rRNA)of six stations was investigated within the water column in the seamount area of Tropical Western Pacific Ocean(TWPO)in May 2019.The seawater has dissolved oxygen(DO)concentration of 3.01-6.68 mg/L and the core of the oxygen minimum zones was located between the depths of 650 m and 1750 m.The bacterial alpha-diversity showed unimodal pattern with the decreasing DO with depths and peaked in the upper oxycline(UO)of OMZs.The bacterial community structure of the mixed layer(ML)and the bottom layer clustered and separated from each other,while those of UO and the OMZ core(OM)clustered and overlapped.Overall,bacterial community composition transitioned from being Alphaproteobacteria and Gammaproteobacteria-dominant in ML to being Gammaproteobacteria and Nitrososphaeria/Deltaproteobacteria-dominant in UO and OM,and then changed to being Clostridia and unidentified Actinobacteria-dominant in the bottom layer.Moreover,both bacterial alpha-diversity and the abundant classes fitted varying sectioned functions with DO.The DO solely explained 40.37%of the variation of bacterial community composition among layers(P<0.001).The predicted function profiling showed that the water column was predominant by chemoheterotrophy,cyanobacteria,and photoautotrophy in ML,by chemoheterotrophy and nitrate/sulfide cycling in UO and OM,and by chemoheterotrophy and ferme ntation in the bottom layer.Our findings revealed the DO-associated variation in bacterial diversity and community composition,and help to clarify the potential responses of microbes and their involved biogeochemical processes to the expansion and intensification of OMZs. 展开更多
关键词 bacterial diversity community composition oxygen minimum zones(OMZs) dissolved oxygen Tropical Western Pacific Ocean(TWPO)
下载PDF
Influence of tool rotation speeds on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT-Graphene-AZ31 magnesium 被引量:1
13
作者 Sanjay Sharma Amit Handa +1 位作者 Sahib Sartaj Singh Deepak Verma 《Journal of Magnesium and Alloys》 SCIE 2019年第3期487-500,共14页
The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical ... The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical and eco-friendly.Reinforcing the metals with carbonaceous nanomaterials are progressively in focus due to their excellent capability to inculcate and tailor the properties of MMCs.In the present research,a hybrid nanocomposite of MWCNT-Graphene-AZ31 Mg alloy has been developed by using variable tool rotation speeds with friction stir processing(FSP).Optimized reinforcement ratio of 1.6%vol.MWCNT and 0.3%vol.of graphene have been used with variable tool rotation speeds,whereas other processing parameters are kept constant.The developed specimens were investigated using standard testing equipment for evaluating and comparing the mechanical properties on the basis of the microstructure of the processing regions and their morphological analysis,according to the ASTM standards.The obtained results revealed an improvement of 19.72%in microhardness and 77.5% of compressive strength in comparison with the base metal AZ 31 Magnesium alloy,with a tool rotational speed of 1400rpm.The values of tensile stress and percentage area reduction were recorded as less than that of the base metal matrix,but an increasing trend has been observed in the values of both with the improvement on rotational speeds of the tool.The effectual strengthening mechanisms are analyzed on the bases of SEM images and observed that discussed and found that grain refinement strengthening is the major contributor to the strength of the nanocomposite. 展开更多
关键词 MMCs(Metal Matrix composites) Friction stir processing(FSP) Multi-walled carbon nanotubes(MWCCT) Graphene Nano Particular Stir zone(SZ) Thermo-mechanically affected zone(TMAZ) Heat Affected zone(HAZ)
下载PDF
Variations in Surface Urban Heat Island and Urban Cool Island Intensity:A Review Across Major Climate Zones 被引量:1
14
作者 Muhammad Sadiq KHAN Sami ULLAH CHEN Liding 《Chinese Geographical Science》 SCIE CSCD 2023年第6期983-1000,共18页
The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:... The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones. 展开更多
关键词 urban heat island intensity(SUHI) urban cool island intensity(UCI) day-night surface urban heat island(SUHI) climate zones landscape composition and configuration sustainable urbanization
下载PDF
Textural and compositional zoning in plagioclase phenocrysts:implications for magma chamber processes in the Emeishan large Igneous Province,SW China
15
作者 Qi Chen Song-Yue Yu +2 位作者 Lie-Meng Chen Sheng-Hua Zhou Jian Kang 《Acta Geochimica》 EI CAS CSCD 2023年第3期453-470,共18页
Textural and compositional zoning within plagioclase phenocrysts records the magma chamber processes,such as magma differentiation,magma recharge and mixing,and crustal contamination.The plagioclase phenocrysts in the... Textural and compositional zoning within plagioclase phenocrysts records the magma chamber processes,such as magma differentiation,magma recharge and mixing,and crustal contamination.The plagioclase phenocrysts in the Daqiao and Qiaojia plagioclase-phyric basalts from the Emeishan Large Igneous Province(LIP)show complex textural and compositional zoning patterns,e.g.,normal,reverse,oscillatory,and patchy zoning patterns.Most plagioclase phenocrysts exhibit a core–rim normal zoning pattern(Pl-A)with euhedral high-An cores(An=76–78%,in mole fraction)and low-An rims(An=68–72%),indicative of the crystal regrowth processes caused by recharge of relatively evolved magmas after the formation of high-An cores.Some phenocrysts have a core–rim reverse zoning pattern(Pl-B)with irregular ovaloid cores,characterized by extremely low An(60–61 mol%)and Ba(84–88 ppm)contents and extremely high87Sr/86Sr ratios(0.7120–0.7130).The rims of the Pl-B have relatively high An(69–72%),Ba(~160 ppm)contents,and low87Sr/86Sri(~0.7056).These Pl-B plagioclase phenocrysts preserve the information about the interaction between the crustal xenocrysts and the transporting magmas.Some plagioclase phenocrysts show a core–mantle–rim oscillatory zoning pattern(Pl-C)with multiple oscillations of An(70–80%),Ba(88–147ppm)from core to rim,revealing replenishment and mixing of multiple batches of basaltic melts with diverse compositions.87Sr/86Sr ratios of the Pl-C do not vary significantly(0.7050–0.7054).A small portion of phenocrysts has patchy patterns in the cores(Pl-D),where the low-An patches(72–75%)in form of elliptical or irregular elongated shapes were enclosed by the high-An domains(80–87%).These features can be attributed to crystal dissolution and regrowth processes during the reaction between earlyformed low-Cumulates and recharged hot primitive melts.The cores,mantles,and rims of different types of plagioclase phenocrysts(except the core of Pl-B)commonly display nearly constant Sr isotopic compositions,implying insignificant wall-rock assimilation at shallow-level magma reservoir(s)during the growth of these plagioclase phenocrysts.In conclusion,the massive crystallization of plagioclase in the late stage was an important controlling factor for the formation of iron-rich basalts in the Emeishan LIP. 展开更多
关键词 Emeishan large Igneous Province Plagioclase-phyric basalt compositional zoning Plagioclase phenocryst Magma replenishment
下载PDF
俯冲带流体——来自(超)高压变质岩石的证据
16
作者 高俊 李继磊 +1 位作者 马智佩 Reiner KLEMD 《地质学报》 EI CAS CSCD 北大核心 2024年第3期758-782,共25页
俯冲带是地球上岩浆活动、高压—超高压变质作用、中深源地震、壳幔物质交换、元素循环和铜金大规模成矿的集中发生场所。富水流体不仅调控了这些地质作用,而且也深刻影响了全球C、S等挥发分的循环。当蚀变大洋岩石圈及上覆沉积物进入... 俯冲带是地球上岩浆活动、高压—超高压变质作用、中深源地震、壳幔物质交换、元素循环和铜金大规模成矿的集中发生场所。富水流体不仅调控了这些地质作用,而且也深刻影响了全球C、S等挥发分的循环。当蚀变大洋岩石圈及上覆沉积物进入俯冲带中深部(15~300 km),伴随由葡萄石-绿纤石相至超高压榴辉岩相的递进变质作用,含水矿物在不同深度的分解造成流体释放为一连续过程。除极端高地温梯度环境之外,大多数俯冲带洋壳释放的流体为富水流体。但,俯冲带不同深度所产生的流体特征有明显差异。出露于全球造山带的高压—超高压变质地体保存了分凝体、脉体、水压致裂角砾岩等流体作用的有力证据,绿辉石、石榴子石、绿帘石等矿物中原生流体包裹体为流体的直接记录。在俯冲带中等深度(<65 km),流体是溶质含量很低的含卤化物水溶液,可含CO_(3)^(2-)、SO_(4)^(2-)、HS^(-)等组分,其所含Si、Al、Ca、Mg、Fe、Na主量元素溶质相当于海水中固化物量的2~3倍,并具大离子亲石元素(LILE)、轻元素(B、Li)富集和高场强元素(HFSE)亏损的特点。当深度≥65 km时,流体转化为类似于超临界性质的溶液,含CH_(4)、C_(2)H_(6)、H_(2)S等挥发分,其所含主量元素溶质显著增加,微量元素除LILE等外,还负载相当量的HFSE和过渡族成矿元素。俯冲带65~100 km深度,为富水流体向超临界流体转变的区间。这种流体具有“亚超临界”性质,发生了氧化还原性质和元素溶解能力的渐变,并伴随硬柱石和角闪石的最终耗尽。高压变质岩石及相关脉体的O、Sr、Nd和金属同位素示踪研究表明俯冲带流体的源区多样,有蚀变基性洋壳、地幔橄榄岩和沉积物,并保存了海底热液蚀变作用的印迹。流体以脉冲方式沿网络状裂隙呈隧道式运移和传输,规模可达千米级,时间尺度在数月至数百年。目前通过高压—超高压变质岩的研究对俯冲带流体已经有了深入的了解,但展望未来,该领域依然有诸多争议和科学问题值得探索。 展开更多
关键词 俯冲带流体 地质证据 流体相性质 化学成分 C-S循环
下载PDF
淮南矿区张集煤矿1410(3)工作面顶板风氧化带探查与评价
17
作者 王康健 翟晓荣 +1 位作者 唐明 张子晴 《煤炭技术》 CAS 2024年第5期180-183,共4页
工作面顶板工程地质条件对工作面支架选型、围岩稳定性评价及安全回采具有重要理论与实际意义,以淮南矿区张集煤矿1410(3)上提工作面为研究对象,基于井下钻探探查工程,采用岩心鉴定与描述、X射线衍射分析等方法,开展了工作面顶板风氧化... 工作面顶板工程地质条件对工作面支架选型、围岩稳定性评价及安全回采具有重要理论与实际意义,以淮南矿区张集煤矿1410(3)上提工作面为研究对象,基于井下钻探探查工程,采用岩心鉴定与描述、X射线衍射分析等方法,开展了工作面顶板风氧化带探查与评价,获得了工作面基岩风氧化带深度及风化程度。结果表明:工作面顶板30 m范围内岩石存在明显的风氧化现象,基岩风氧化带深度在28~35 m,基岩风氧化程度表现为中等风化-残积土,风氧化带岩石颜色以黄色为主,风化裂隙发育,岩体结构表现为块状-碎裂状-土状,岩石风化后矿物成分以高岭石、蒙脱石、伊利石及绿泥石为主,含量可达60%以上,风氧化带内岩石较正常岩石结构破碎,工程地质特性下降,研究结果可对下一步工作面顶板管理及回采上限确定提供依据和指导。 展开更多
关键词 风氧化带 风化程度 X射线衍射 矿物成分
下载PDF
配筋率对钢箱-UHPC组合梁裂缝特征的影响
18
作者 莫时旭 房洋洋 +1 位作者 郑艳 农双秀 《山东科技大学学报(自然科学版)》 CAS 北大核心 2024年第3期85-93,共9页
为研究钢箱-超高性能混凝土(UHPC)组合梁负弯矩区裂缝特征,设计制作了3根配筋率分别为1%、2%和3%的UHPC翼板部分充填砼窄幅钢箱组合梁,通过对不同配筋率的试验梁进行反向加载试验研究组合梁的裂缝发展特征,并对最大裂缝宽度、裂缝间距... 为研究钢箱-超高性能混凝土(UHPC)组合梁负弯矩区裂缝特征,设计制作了3根配筋率分别为1%、2%和3%的UHPC翼板部分充填砼窄幅钢箱组合梁,通过对不同配筋率的试验梁进行反向加载试验研究组合梁的裂缝发展特征,并对最大裂缝宽度、裂缝间距及开裂荷载进行对比分析。研究结果表明:试验梁在不同配筋率条件下,UHPC面层裂缝发展明显不同,配筋率越高最大裂缝宽度越小,裂缝越密集,开裂荷载越大;与配筋率为1%的试验梁相比,配筋率为2%和3%的试验梁的开裂弯矩分别提高了30.3%和65.2%;可根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362—2018)中的裂缝宽度计算公式乘以0.78的修正系数,来计算窄幅钢箱-UHPC组合梁负弯矩区的裂缝宽度。 展开更多
关键词 窄幅钢箱组合梁 配筋率 裂缝发展特征 负弯矩区
下载PDF
再生复合微粉混凝土界面过渡区性能研究
19
作者 关虓 张源 +2 位作者 孙甲 邱继生 李乐 《西安科技大学学报》 CAS 北大核心 2024年第2期359-365,共7页
为研究再生复合微粉复掺比对混凝土界面过渡区性能的影响机理,用宏微观试验相结合的方法,分析不同复掺比对混凝土劈裂抗拉强度和显微硬度的影响规律,并利用灰色关联法探究力学性能与微观结构的关系。结果表明:再生砖粉对混凝土的改善效... 为研究再生复合微粉复掺比对混凝土界面过渡区性能的影响机理,用宏微观试验相结合的方法,分析不同复掺比对混凝土劈裂抗拉强度和显微硬度的影响规律,并利用灰色关联法探究力学性能与微观结构的关系。结果表明:再生砖粉对混凝土的改善效果优于再生混凝土粉,且掺入合理的再生复合微粉会改善混凝土界面过渡区的微观结构;再生复合微粉混凝土各组相显微硬度关系为:骨料相>砂浆相>界面过渡区相,且界面过渡区厚度随养护龄期的增加而逐渐减小;界面过渡区厚度与劈裂抗拉强度关系显著,呈线性负相关,所建立的模型拟合度较高。界面过渡区厚度能准确地表征再生复合微粉混凝土宏观性能变化规律,当再生混凝土粉/再生砖粉为2∶8时,可制备出性能良好的C30混凝土,具有良好的推广应用价值。 展开更多
关键词 再生复合微粉混凝土 劈裂抗拉强度 显微硬度 界面过渡区 灰色关联法
下载PDF
铁尾矿基多固废混凝土抗压性能及微观结构分析
20
作者 张延年 林吉森 +3 位作者 陈昊 刘剑平 程祥 余靖玟 《沈阳工业大学学报》 CAS 北大核心 2024年第2期225-232,共8页
针对铁尾矿堆存困难、综合利用率低和活性低的问题,以铁尾矿钢渣脱硫灰为复合掺合料制备多固废混凝土。通过抗压性能测试,研究复合掺合料掺量、铁尾矿细度对混凝土抗压强度的影响,并利用压汞法(MIP)和背散射电子成像技术(BSE)探究混凝... 针对铁尾矿堆存困难、综合利用率低和活性低的问题,以铁尾矿钢渣脱硫灰为复合掺合料制备多固废混凝土。通过抗压性能测试,研究复合掺合料掺量、铁尾矿细度对混凝土抗压强度的影响,并利用压汞法(MIP)和背散射电子成像技术(BSE)探究混凝土的微观结构。结果表明:复合掺合料的掺入对混凝土早期抗压强度影响较大,掺量小于20%的混凝土28 d抗压强度与无掺合料组抗压强度基本持平,30%掺量的混凝土抗压强度随铁尾矿比表面积的增大而先增大后减小;掺入复合掺合料和减小铁尾矿细度能够改善混凝土孔结构和提高界面过渡区的密实度。 展开更多
关键词 多固废混凝土 铁尾矿 复合掺合料 抗压强度 孔结构 界面过渡区 钢渣 脱硫灰
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部