A new type of double salient starter/generator is presented, which can be used in aircraft Low Voltage Direct Current (LVDC), Variable Speed Constant Frequency (VSCF) and High Voltage Direct Current (HVDC) systems. Th...A new type of double salient starter/generator is presented, which can be used in aircraft Low Voltage Direct Current (LVDC), Variable Speed Constant Frequency (VSCF) and High Voltage Direct Current (HVDC) systems. The operational theory of the motor and generator is analyzed, and corresponding control strategies are given. An 18kW prototype has been implemented to verify the system performance. It is shown that the DSM S/G system possesses simple structure, high efficiency and flexible control. It is ap...展开更多
More Electrical Aircraft(MEA)which replaces the hydraulic and pneumatic power by electrical power leads to reducing emissions and fuel consumption.The MEA concept has led to a growing use of the starter/generator(S/G)...More Electrical Aircraft(MEA)which replaces the hydraulic and pneumatic power by electrical power leads to reducing emissions and fuel consumption.The MEA concept has led to a growing use of the starter/generator(S/G)system.Permanent magnet(PM)machines have been gaining interests for aircraft S/G system application over the last few years.This is mainly due to the several advantages,including high power density,high efficiency and high speed ability.The shortcoming of the PM machines is the de-excitation problem in case of a failure,which is a main issue for the aircraft application.However,by using a PM machine with high reactance or multiphase configuration,the fault-tolerant ability can be improved.In terms of the aircraft S/G system,this paper is going to present a comprehensive analysis of PM machines.Firstly,the state-of-the-art of PM starter/generator(PMS/G)is summarized and the basic structure of PMS/G system is analyzed.Next,key technologies of the PMS/G system are summarized and analyzed.Finally,a flux weakening fault protection strategy that is used to suppress the turn-to-turn short circuit(SC)current is studied,simulated and verified.With the breakthrough of key technologies based on the development of high temperature electromagnetic material and high temperature power electronics,the PMS/G will be a potential candidate for aircraft S/G system including the embedded power generation system.展开更多
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app...To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.展开更多
In order to better realize the energy recovery and storage of hybrid EVs(HEVs),a switched reluctance starter/generator(SRS/G)with both starting and power generation functions is investigated in this paper.First,the ir...In order to better realize the energy recovery and storage of hybrid EVs(HEVs),a switched reluctance starter/generator(SRS/G)with both starting and power generation functions is investigated in this paper.First,the iron loss of SRS/G is mainly studied to reduce the motor loss and improve the power generation efficiency.Then,the energy storage of hybrid EVs can be effectively improved.Secondly,a magnetic flux density(MFD)waveforms solution method is proposed to solve the difficulty in calculating the iron loss of the SRS/G.Compared with the commonly used finite element method,the proposed solution method has the advantages of simple,fast and small computational amount.Meanwhile,considering the different operating conditions of SRS/G,the iron loss models for both the time-domain and frequency-domain are established.In addition,the calculation formula of the variable coefficient Bertotti three-term loss separation is improved.As the hysteresis loss coefficient,the Steinmetz coefficient and the stray loss coefficient are respectively fitted by the Fourier fitting method.This method is also applied to solve the iron loss of SRS/G.Finally,through an experimental verification,it is indicated that the development of proposed method has high accuracy.展开更多
为实现混合动力汽车用起动发电一体化(Integrated Starter and Generator,ISG)永磁同步电机控制系统的优化设计与精确的仿真分析,提高ISG永磁同步电机控制系统的快速开发能力,提出了一种ISG永磁同步电机控制系统设计新方法。该方法基于...为实现混合动力汽车用起动发电一体化(Integrated Starter and Generator,ISG)永磁同步电机控制系统的优化设计与精确的仿真分析,提高ISG永磁同步电机控制系统的快速开发能力,提出了一种ISG永磁同步电机控制系统设计新方法。该方法基于定子电流最优控制策略建立控制系统模型,结合有限元法计算的ISG永磁同步电机饱和电感参数特性和功率器件特性,在Simplorer系统仿真平台上开展ISG永磁同步电机及其控制系统设计与仿真。样机的仿真结果与试验结果比较吻合,验证了该设计方法的可信性,并实现了ISG永磁同步电机控制系统的快速开发。展开更多
文摘A new type of double salient starter/generator is presented, which can be used in aircraft Low Voltage Direct Current (LVDC), Variable Speed Constant Frequency (VSCF) and High Voltage Direct Current (HVDC) systems. The operational theory of the motor and generator is analyzed, and corresponding control strategies are given. An 18kW prototype has been implemented to verify the system performance. It is shown that the DSM S/G system possesses simple structure, high efficiency and flexible control. It is ap...
基金This work was supported in part by National Natural Science Foundation for Excellent Young Scholar of China under Award 51622704Jiangsu Provincial Science Funds for Distinguished Young Scientists under Award BK20150033.
文摘More Electrical Aircraft(MEA)which replaces the hydraulic and pneumatic power by electrical power leads to reducing emissions and fuel consumption.The MEA concept has led to a growing use of the starter/generator(S/G)system.Permanent magnet(PM)machines have been gaining interests for aircraft S/G system application over the last few years.This is mainly due to the several advantages,including high power density,high efficiency and high speed ability.The shortcoming of the PM machines is the de-excitation problem in case of a failure,which is a main issue for the aircraft application.However,by using a PM machine with high reactance or multiphase configuration,the fault-tolerant ability can be improved.In terms of the aircraft S/G system,this paper is going to present a comprehensive analysis of PM machines.Firstly,the state-of-the-art of PM starter/generator(PMS/G)is summarized and the basic structure of PMS/G system is analyzed.Next,key technologies of the PMS/G system are summarized and analyzed.Finally,a flux weakening fault protection strategy that is used to suppress the turn-to-turn short circuit(SC)current is studied,simulated and verified.With the breakthrough of key technologies based on the development of high temperature electromagnetic material and high temperature power electronics,the PMS/G will be a potential candidate for aircraft S/G system including the embedded power generation system.
基金co-supported by the National Natural Science Foundation of China(No.52177028)in part by the Aeronautical Science Foundation of China(No.201907051002)。
文摘To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.
基金supported in part by the Shenzhen Collaborative Innovation Special Plan International Cooperation Research Project(No.GJHZ20220913144400001)the General Research Project of Shenzhen Science and Technology Plan(No.JCYJ20220818100000001).
文摘In order to better realize the energy recovery and storage of hybrid EVs(HEVs),a switched reluctance starter/generator(SRS/G)with both starting and power generation functions is investigated in this paper.First,the iron loss of SRS/G is mainly studied to reduce the motor loss and improve the power generation efficiency.Then,the energy storage of hybrid EVs can be effectively improved.Secondly,a magnetic flux density(MFD)waveforms solution method is proposed to solve the difficulty in calculating the iron loss of the SRS/G.Compared with the commonly used finite element method,the proposed solution method has the advantages of simple,fast and small computational amount.Meanwhile,considering the different operating conditions of SRS/G,the iron loss models for both the time-domain and frequency-domain are established.In addition,the calculation formula of the variable coefficient Bertotti three-term loss separation is improved.As the hysteresis loss coefficient,the Steinmetz coefficient and the stray loss coefficient are respectively fitted by the Fourier fitting method.This method is also applied to solve the iron loss of SRS/G.Finally,through an experimental verification,it is indicated that the development of proposed method has high accuracy.
文摘为实现混合动力汽车用起动发电一体化(Integrated Starter and Generator,ISG)永磁同步电机控制系统的优化设计与精确的仿真分析,提高ISG永磁同步电机控制系统的快速开发能力,提出了一种ISG永磁同步电机控制系统设计新方法。该方法基于定子电流最优控制策略建立控制系统模型,结合有限元法计算的ISG永磁同步电机饱和电感参数特性和功率器件特性,在Simplorer系统仿真平台上开展ISG永磁同步电机及其控制系统设计与仿真。样机的仿真结果与试验结果比较吻合,验证了该设计方法的可信性,并实现了ISG永磁同步电机控制系统的快速开发。