A mine-used multi-function serial signal converter is introduced.This converter is based on Ethernet.The core of this design is embedded microprocessor STM32F107VCT6.Embedded operation system μC/OS-Ⅱ is transplanted...A mine-used multi-function serial signal converter is introduced.This converter is based on Ethernet.The core of this design is embedded microprocessor STM32F107VCT6.Embedded operation system μC/OS-Ⅱ is transplanted into this converter,and light-weight Internet protocal (LwIP) stack is also embedded to realize mutual conversion of serial signals such as meter bus (M-Bus) signal,RS485 signal,RS232 signal and Ethernet signal.Interconnection between all kinds of monitoring system interfaces under coal mine can be formed easily,which can solve compatibility problem between monitoring system and communication system and improve overall performance of safety monitoring system.The designed multi-function serial signal converter is of great value for application,which is worthy to be popularized in coal mine safety production.展开更多
This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describe...This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.展开更多
To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC....To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.展开更多
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous co...Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.展开更多
This paper shows DC and small-signal circuit models for the PWM DC to DC buck, boost and back/ boost converters with the equivalent series resistance of the inductor. The DC voltage transfer function and the efficienc...This paper shows DC and small-signal circuit models for the PWM DC to DC buck, boost and back/ boost converters with the equivalent series resistance of the inductor. The DC voltage transfer function and the efficiency of the converter are derived from the DC model. Small-signal open-loop characteristics are derived from the small-signal model based on a state variable model. A design example proves the performance of the circuit and verification of the model.展开更多
In order to investigate the changes in the expression of extracellular signal regulated kinase (ERK1/ERK2) and angiotensin converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheu...In order to investigate the changes in the expression of extracellular signal regulated kinase (ERK1/ERK2) and angiotensin converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheumatic heart diseases were examined. Nineteen patients had chronic persistent AF (AF≥6 months, CAF), 12 patients had paroxymal AF (PAF) and 21 patients had no history of AF. The ERK expression was detected at the mRNA level by reverse transcription polymerase chain reaction, at the protein level by Western blotting and at atrial tissue level by immunohistochemistry. ERK activating kinases (MEK1/2) and ACE were determined by Western blotting techniques. The expression of ERK2 mRNA was increased in the patients with CAF (74±19 U vs sinus rhythm: 32±24 U, P <0.05). Activated ERK1/ERK2 and MEK1/2 were increased to more than 150 % in the patients with AF compared to those with sinus rhythm. No significant difference between CAF and PAF was found. The expression of ACE was three fold increased in the patients with CAF compared to those with sinus rhythm. Patients with AF showed an increased expression of ERK1/ERK2 in atrial interstitial cells and marked atrial fibrosis. An ACE dependent increase in the amounts of activated ERK1/ERK2 in atrial interstitial cells may be one of molecular mechanisms for the development of atrial fibrosis in the patients with AF. These findings may have important impact on the treatment of AF.展开更多
In this paper hybrid converters with double inputs are investigated. Mainly any possible topologies are constructed and only one of them is chosen and modeled in none ideal format, by state space averaging method. Aft...In this paper hybrid converters with double inputs are investigated. Mainly any possible topologies are constructed and only one of them is chosen and modeled in none ideal format, by state space averaging method. After that small signal model and equilibrium point of that model is calculated. Finally with power sharing analysis the best point in efficiency was calculated.展开更多
The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the ...The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.展开更多
This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power...This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power components,overall system loss and magnetic component selection based upon the single-level boost PFC switch converter.Besides,relying on the application of mi-croprocessor in power converter technology and DSP(Digital Signal Processing) chip's strong cal-culating capacity,the letter presents the adoption of modified scheme of tri-level boost PFC converter under the control of predictive control algorithm.Moreover,the operating principle and control method are specified,the results of circuit test and analysis are provided and the advantages of pre-dictive control technology-based multi-level boost PFC converter is verified.展开更多
In general,the TTL/CMOS signal are suitable for short range indoor transmission,however,these signals are vulnerable to interference in complex electromagnetic environments.Commissioned by the engineering and technica...In general,the TTL/CMOS signal are suitable for short range indoor transmission,however,these signals are vulnerable to interference in complex electromagnetic environments.Commissioned by the engineering and technical department,we designed and manufactured an MMF-TTL converter.The device works with the equipment with TTL/CMOS interface,which can effectively extend the control signal transmission distance;at the same time,it can also ensure the quality of the transmitted signal to a certain extent.展开更多
This Article introduced the concept, topology and function of voltage type Buck converter, built a small signal model, analysis the negative impedance character of converter, then simulated a Buck-type DC/ DC through ...This Article introduced the concept, topology and function of voltage type Buck converter, built a small signal model, analysis the negative impedance character of converter, then simulated a Buck-type DC/ DC through MATLAB, observed the dynamic response of converter to pulse-type power load, verified the small-signal theoretical by simulation, lay the foundation for analyzing DC system stability.展开更多
The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-no...The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-noise ratio (SNR) metric. Two different WDM photonic ADC architectures are considered for the digitization of radar signals with 5 GHz of bandwidth (spatial resolution of 3 cm), in order to provide a comprehensive study of the compromises present when deploying radar signals with high-resolution: 1) a four-channel architecture with each channel employing an ADC with 5 GSamples/s, and 2) an eight-channel architecture with each channel employing an ADC with 2.5 GSamples/s. For peak powers of the pulsed source between 10 and 20 dBm and a distance between the radar antenna and the sensing object of 2.4 meters, peak SNR levels between 29 and 39 dB are achieved with the eight-channel architecture, which shows higher peak SNR levels when compared with the four-channel architecture. For the eight-channel architecture and for the same peak powers of the pulsed source, peak SNR levels between 11 and 16 dB are obtained when the distance increases to 13.5 meters. With this evaluation using the peak SNR, it is possible to assess the performance limits when choosing a specific radar range, while keeping the same resolution.展开更多
This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified...This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.展开更多
A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space eq...A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>展开更多
直流母线电容作为电机驱动变换器中最薄弱的元件之一,其老化会导致系统故障的概率增大,因此对电容老化进行在线监测至关重要。针对现有监测方法存在经济性差、采样频率高、影响系统正常运行等问题,提出一种基于长周期暂态信号分析的电...直流母线电容作为电机驱动变换器中最薄弱的元件之一,其老化会导致系统故障的概率增大,因此对电容老化进行在线监测至关重要。针对现有监测方法存在经济性差、采样频率高、影响系统正常运行等问题,提出一种基于长周期暂态信号分析的电容在线监测方法,用于估计电机驱动变换器直流母线等值串联电容(equivalent series capacitance,ESC)。首先,根据系统负载切换过程建立共节点感-容等值暂态模型,分析长周期暂态信号特点。其次,推导基于长周期暂态信号的在线监测模型,确定监测程序启动判定条件。然后,提出一种基于多项式重构的电容电流基线校准方法,消除传感器零漂影响,提高监测精度。最后,仿真和实验表明所提出方法的监测精度满足电容监测的要求。展开更多
柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔...柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔性直流配电系统的反馈控制模型,采用频域分析法研究了换流器恒功率负载特性对系统稳定性的影响,并结合数学模型和频域分析,指出SMES装置能够为电网提供正阻尼,增大了系统开环传递函数在剪切频率处的相位裕度,从而改善了系统稳定性。为防止超导磁体两端电压过高,SMES装置与直流配电网连接的DC/DC换流器需具备一定的电压调节性能,因此研究了采用模块化多电平DC/DC换流器DC-MMC(modular multilevel DC/DC converter)的SMES装置,通过调节子模块个数灵活设置换流器电压变比,在实现换流器能量双向流动的同时控制超导磁体两端电压,以保护储能装置。最后通过时域仿真波形验证了采用DC-MMC的SMES装置在提高柔性直流配电系统稳定性方面的可行性和有效性。展开更多
文摘A mine-used multi-function serial signal converter is introduced.This converter is based on Ethernet.The core of this design is embedded microprocessor STM32F107VCT6.Embedded operation system μC/OS-Ⅱ is transplanted into this converter,and light-weight Internet protocal (LwIP) stack is also embedded to realize mutual conversion of serial signals such as meter bus (M-Bus) signal,RS485 signal,RS232 signal and Ethernet signal.Interconnection between all kinds of monitoring system interfaces under coal mine can be formed easily,which can solve compatibility problem between monitoring system and communication system and improve overall performance of safety monitoring system.The designed multi-function serial signal converter is of great value for application,which is worthy to be popularized in coal mine safety production.
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Government.
文摘This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.
文摘To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09)the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303)
文摘Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.
文摘This paper shows DC and small-signal circuit models for the PWM DC to DC buck, boost and back/ boost converters with the equivalent series resistance of the inductor. The DC voltage transfer function and the efficiency of the converter are derived from the DC model. Small-signal open-loop characteristics are derived from the small-signal model based on a state variable model. A design example proves the performance of the circuit and verification of the model.
文摘In order to investigate the changes in the expression of extracellular signal regulated kinase (ERK1/ERK2) and angiotensin converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheumatic heart diseases were examined. Nineteen patients had chronic persistent AF (AF≥6 months, CAF), 12 patients had paroxymal AF (PAF) and 21 patients had no history of AF. The ERK expression was detected at the mRNA level by reverse transcription polymerase chain reaction, at the protein level by Western blotting and at atrial tissue level by immunohistochemistry. ERK activating kinases (MEK1/2) and ACE were determined by Western blotting techniques. The expression of ERK2 mRNA was increased in the patients with CAF (74±19 U vs sinus rhythm: 32±24 U, P <0.05). Activated ERK1/ERK2 and MEK1/2 were increased to more than 150 % in the patients with AF compared to those with sinus rhythm. No significant difference between CAF and PAF was found. The expression of ACE was three fold increased in the patients with CAF compared to those with sinus rhythm. Patients with AF showed an increased expression of ERK1/ERK2 in atrial interstitial cells and marked atrial fibrosis. An ACE dependent increase in the amounts of activated ERK1/ERK2 in atrial interstitial cells may be one of molecular mechanisms for the development of atrial fibrosis in the patients with AF. These findings may have important impact on the treatment of AF.
文摘In this paper hybrid converters with double inputs are investigated. Mainly any possible topologies are constructed and only one of them is chosen and modeled in none ideal format, by state space averaging method. After that small signal model and equilibrium point of that model is calculated. Finally with power sharing analysis the best point in efficiency was calculated.
文摘The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.
文摘This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power components,overall system loss and magnetic component selection based upon the single-level boost PFC switch converter.Besides,relying on the application of mi-croprocessor in power converter technology and DSP(Digital Signal Processing) chip's strong cal-culating capacity,the letter presents the adoption of modified scheme of tri-level boost PFC converter under the control of predictive control algorithm.Moreover,the operating principle and control method are specified,the results of circuit test and analysis are provided and the advantages of pre-dictive control technology-based multi-level boost PFC converter is verified.
文摘In general,the TTL/CMOS signal are suitable for short range indoor transmission,however,these signals are vulnerable to interference in complex electromagnetic environments.Commissioned by the engineering and technical department,we designed and manufactured an MMF-TTL converter.The device works with the equipment with TTL/CMOS interface,which can effectively extend the control signal transmission distance;at the same time,it can also ensure the quality of the transmitted signal to a certain extent.
文摘This Article introduced the concept, topology and function of voltage type Buck converter, built a small signal model, analysis the negative impedance character of converter, then simulated a Buck-type DC/ DC through MATLAB, observed the dynamic response of converter to pulse-type power load, verified the small-signal theoretical by simulation, lay the foundation for analyzing DC system stability.
文摘The performance of the wavelength division multiplexing (WDM) photonic analogue-to-digital converter (ADC) used for digitization of high-resolution radar systems is evaluated numerically by using the peak signal-to-noise ratio (SNR) metric. Two different WDM photonic ADC architectures are considered for the digitization of radar signals with 5 GHz of bandwidth (spatial resolution of 3 cm), in order to provide a comprehensive study of the compromises present when deploying radar signals with high-resolution: 1) a four-channel architecture with each channel employing an ADC with 5 GSamples/s, and 2) an eight-channel architecture with each channel employing an ADC with 2.5 GSamples/s. For peak powers of the pulsed source between 10 and 20 dBm and a distance between the radar antenna and the sensing object of 2.4 meters, peak SNR levels between 29 and 39 dB are achieved with the eight-channel architecture, which shows higher peak SNR levels when compared with the four-channel architecture. For the eight-channel architecture and for the same peak powers of the pulsed source, peak SNR levels between 11 and 16 dB are obtained when the distance increases to 13.5 meters. With this evaluation using the peak SNR, it is possible to assess the performance limits when choosing a specific radar range, while keeping the same resolution.
文摘This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.
文摘A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>
文摘直流母线电容作为电机驱动变换器中最薄弱的元件之一,其老化会导致系统故障的概率增大,因此对电容老化进行在线监测至关重要。针对现有监测方法存在经济性差、采样频率高、影响系统正常运行等问题,提出一种基于长周期暂态信号分析的电容在线监测方法,用于估计电机驱动变换器直流母线等值串联电容(equivalent series capacitance,ESC)。首先,根据系统负载切换过程建立共节点感-容等值暂态模型,分析长周期暂态信号特点。其次,推导基于长周期暂态信号的在线监测模型,确定监测程序启动判定条件。然后,提出一种基于多项式重构的电容电流基线校准方法,消除传感器零漂影响,提高监测精度。最后,仿真和实验表明所提出方法的监测精度满足电容监测的要求。
文摘柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔性直流配电系统的反馈控制模型,采用频域分析法研究了换流器恒功率负载特性对系统稳定性的影响,并结合数学模型和频域分析,指出SMES装置能够为电网提供正阻尼,增大了系统开环传递函数在剪切频率处的相位裕度,从而改善了系统稳定性。为防止超导磁体两端电压过高,SMES装置与直流配电网连接的DC/DC换流器需具备一定的电压调节性能,因此研究了采用模块化多电平DC/DC换流器DC-MMC(modular multilevel DC/DC converter)的SMES装置,通过调节子模块个数灵活设置换流器电压变比,在实现换流器能量双向流动的同时控制超导磁体两端电压,以保护储能装置。最后通过时域仿真波形验证了采用DC-MMC的SMES装置在提高柔性直流配电系统稳定性方面的可行性和有效性。