China is the third largest country in the world, with a land area of about 9.6 million km2. It is endowed with abundant mineral resources, and the metal mining activity can be traced back to ca. 8000 years ago. Howeve...China is the third largest country in the world, with a land area of about 9.6 million km2. It is endowed with abundant mineral resources, and the metal mining activity can be traced back to ca. 8000 years ago. However, due to language barrier, little has been known about the geology and tectonics to the outside world until 1980s. In the last three decades, a great deal of knowledge has been gained, enhanced by a vigorous cooperation between Chinese and Western geologists. Research papers about geological, geochemical, and geochronological features of mineral deposits of China are widely published and cited in international journals. A comprehen- sive and comprehensible English literature that summarises the features of mineral deposits in China, however, is still lacking.展开更多
The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is...The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is 14°43′04″ N and 106°07′02″ E.展开更多
The Tertiary is the main mineralization period in the Lanping-Simao Basin.The deposits are rich in organic matter and the organie matter takes part in the metal and nonmetal mineralization process. The organic mineral...The Tertiary is the main mineralization period in the Lanping-Simao Basin.The deposits are rich in organic matter and the organie matter takes part in the metal and nonmetal mineralization process. The organic mineralization is controlled by the tectonic setting.Different tectonic setting results in different mineralization and type of organic matters.展开更多
Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical str...Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.展开更多
We analyzed the major and trace element chemical compositions of 66 granitic rocks from 15 different areas in Japan. The intrusions from which the samples were collected were associated with Pb-Zn, Mo, Cu-Fe, Sn, or W...We analyzed the major and trace element chemical compositions of 66 granitic rocks from 15 different areas in Japan. The intrusions from which the samples were collected were associated with Pb-Zn, Mo, Cu-Fe, Sn, or W mineralization and, for comparison, samples were also collected from intrusions not associated with any metal mineralization. The analyses indicated that the granitic rocks associated with Pb-Zn, Mo, or Cu-Fe mineralization were granites, granodiorites, or diorites, and that they were all I-type and formed in a volcanic arc tectonic setting. The granitic rocks associated with Sn or W mineralization and barren granitic rocks were classified as granites and as I-type with the exception of a few S-type granitic rocks. Most of the Sn- or W-associated granitic rocks and barren granitic rocks are thought to have formed in a volcanic arc tectonic setting. The Pb-Zn-, Mo-, or Cu-Fe-associated granitic rocks rarely shows negative Eu anomalies and a few of them are adakitic rocks, whereas all of the Sn- or W-associated granitic rocks and barren granitic rocks show negative Eu anomalies. For these Japanese granitic rocks, the contents of K2O, La, Y, Rb, Ta, Pb, Th, U, and REEs other than Eu increase with increasing SiO2. Conversely, the contents of major components other than Na2O and K2O and the trace components V, Zn, Sr, Eu, and Sc decrease with increasing SiO2. The Zr, Sn, and Hf abundances increase with increasing SiO2 up to 70 wt%, but their abundances decrease when the SiO2 exceeds 70 wt%. This suggests that granitic magma is saturated with these elements at 70 wt% of SiO2, approximately.展开更多
文摘China is the third largest country in the world, with a land area of about 9.6 million km2. It is endowed with abundant mineral resources, and the metal mining activity can be traced back to ca. 8000 years ago. However, due to language barrier, little has been known about the geology and tectonics to the outside world until 1980s. In the last three decades, a great deal of knowledge has been gained, enhanced by a vigorous cooperation between Chinese and Western geologists. Research papers about geological, geochemical, and geochronological features of mineral deposits of China are widely published and cited in international journals. A comprehen- sive and comprehensible English literature that summarises the features of mineral deposits in China, however, is still lacking.
基金financially supported by the Special fund for Foreign Mineral Resources Risk Exploration (Grant No.Sichuan Financial Investment (2010)331)China Geological Survey (Grant No.12120114012501)
文摘The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is 14°43′04″ N and 106°07′02″ E.
文摘The Tertiary is the main mineralization period in the Lanping-Simao Basin.The deposits are rich in organic matter and the organie matter takes part in the metal and nonmetal mineralization process. The organic mineralization is controlled by the tectonic setting.Different tectonic setting results in different mineralization and type of organic matters.
文摘Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.
文摘We analyzed the major and trace element chemical compositions of 66 granitic rocks from 15 different areas in Japan. The intrusions from which the samples were collected were associated with Pb-Zn, Mo, Cu-Fe, Sn, or W mineralization and, for comparison, samples were also collected from intrusions not associated with any metal mineralization. The analyses indicated that the granitic rocks associated with Pb-Zn, Mo, or Cu-Fe mineralization were granites, granodiorites, or diorites, and that they were all I-type and formed in a volcanic arc tectonic setting. The granitic rocks associated with Sn or W mineralization and barren granitic rocks were classified as granites and as I-type with the exception of a few S-type granitic rocks. Most of the Sn- or W-associated granitic rocks and barren granitic rocks are thought to have formed in a volcanic arc tectonic setting. The Pb-Zn-, Mo-, or Cu-Fe-associated granitic rocks rarely shows negative Eu anomalies and a few of them are adakitic rocks, whereas all of the Sn- or W-associated granitic rocks and barren granitic rocks show negative Eu anomalies. For these Japanese granitic rocks, the contents of K2O, La, Y, Rb, Ta, Pb, Th, U, and REEs other than Eu increase with increasing SiO2. Conversely, the contents of major components other than Na2O and K2O and the trace components V, Zn, Sr, Eu, and Sc decrease with increasing SiO2. The Zr, Sn, and Hf abundances increase with increasing SiO2 up to 70 wt%, but their abundances decrease when the SiO2 exceeds 70 wt%. This suggests that granitic magma is saturated with these elements at 70 wt% of SiO2, approximately.