This work aimed, on the one hand, to determine the mineral and phytochemical composition of Carica papaya in order to guarantee the food safety of consumers and on the other hand, to evaluate the acute toxicity of pap...This work aimed, on the one hand, to determine the mineral and phytochemical composition of Carica papaya in order to guarantee the food safety of consumers and on the other hand, to evaluate the acute toxicity of papaya seeds. The papayas were bought at the Mzée market in Lubumbashi and Selembao in Kinshasa. Fruit sampling was done according to the ISO 7002 standard on agricultural and food products;the papayas were firm, mature, and without stains or physical damage. The analysis results of the papaya pulp showed both for the samples from the city of Lubumbashi and for the city province of Kinshasa that it contains respectively 85.87% and 84.46% water, 0.59% and 0.53% ash content. The mineral evaluation of our two samples presented a potassium content of 200 ± 8 mg, magnesium 13.12 ± 3 mg, calcium 22.15 ± 2 mg, sodium 3 mg ± 0.5 for the sample from Lubumbashi and 192.32 ± 8 mg of potassium, 14.458 ± 3 mg of magnesium, 20.58 ± 2 mg of calcium and 3.58 ± 0.5 mg of sodium for the sample from Kinshasa in macroelements. Concerning the trace elements, after analysis, we found zinc content (0.29 ± 0.1 mg and 0.12 ± 0.1 mg), copper (0.02 ± 0.01 mg and 0.14 ± 0.01 mg), and iron (2.22 ± 0.5 mg and 2.04 ± 0.5 mg) respectively for Lubumbashi and Kinshasa. The chemical screening indicates the presence of alkaloids, saponosides, tannins catechics, flavonoids and anthocyanins in the palm wine and ethanolic extract of the seeds of Carica papaya and an absence of cyanogenic glycosides and gallic tannins. With mild toxicity, the seeds of the fruit of Carica papaya L. can be used with moderate risk by the population.展开更多
Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is no...Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is not well known. Three distinct soil samples were used in this investigation. The findings indicated the effect of varied mineral composition proportions and fines amount on the liquid limit, plastic limit, and plasticity index as assessed by the Casagrande test and hand-rolling method. The fluctuation of maximum dry density and optimal moisture content with these three soils has also been studied. Furthermore, correlations were established to indicate the compaction parameters and the amount of minerals and particles in the soil. The data show that the mineral content of the soil has a direct impact on the Atterberg limits and compaction characteristics. Soils containing larger percentages of expansive minerals, such as montmorillonite, have more flexibility and volume change capability. Mineral composition influences compaction parameters such as maximum dry density, ideal water content, axial strain, and axial stress. Soils with a larger proportion of fines, such as Soil 2 and Soil 3, have stronger flexibility and lower compaction qualities, with higher ideal water content and lower maximum dry density. Soil 1 has moderate flexibility and intermediate compaction qualities due to its low fines percentage. The effect of different mineral compositions and fines on the Atterberg limits and compaction characteristics of soils can be used to predict the behavior of compacted soils encountered in engineering practices, reducing the time and effort required to assess soil suitability for engineering use.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant ...Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant reserves,low cost,excellent mechanical prop-erties,and chemical stability.Over the past decades,various methods,such as those involving heat,acid,alkali,organic amine,amino sil-ane,and ionic liquid,have been employed to enhance the CO_(2) capture performance of natural minerals to attain high specific surface area,a large number of pore structures,and rich active sites.Future research on CO_(2) capture by natural minerals will focus on the full utiliza-tion of the properties of natural minerals,adoption of suitable modification methods,and preparation of composite materials with high specific surface area and rich active sites.In addition,we provide a summary of the principle and technical route of direct and indirect mineralization of CO_(2) by natural minerals.This process uses minerals with high calcium and magnesium contents,such as forsterite(Mg_(2)SiO_(4)),serpentine[Mg_(3)Si_(2)O(OH)_(4)],and wollastonite(CaSiO_(3)).The research status of indirect mineralization of CO_(2) using hydro-chloric acid,acetic acid,molten salt,and ammonium salt as media is also introduced in detail.The recovery of additives and high-value-added products during the mineralization process to increase economic benefits is another focus of future research on CO_(2) mineralization by natural minerals.展开更多
Sairme mineral water, one of the famous mineral waters in Georgia, is renowned for its exceptional healing properties. The distinctiveness and therapeutic benefits of the naturally sourced mineral water, known as “Sa...Sairme mineral water, one of the famous mineral waters in Georgia, is renowned for its exceptional healing properties. The distinctiveness and therapeutic benefits of the naturally sourced mineral water, known as “Sairme”, stem from its rich array of microelements, notably including iron and manganese. Since 1948, the bottling of Sairme mineral water has been a prominent activity. Named after the Sairme deposit, this mineral water is packaged in various formats to cater to diverse consumer preferences. The bottling process involves transporting the mineral water from wells to the bottling plant through pipelines. Prior to bottling, the mineral water undergoes meticulous processing stages in adherence to current Georgian and international regulations. This process ensures that the concentration of trace elements in the bottled water is minimized, maintaining its purity and quality. Given the importance of preserving the microelements present in bottled mineral water, our research is dedicated to optimizing the technological process. Our objective is to safeguard the valuable microelements while ensuring the highest standards of quality and safety in the final product.展开更多
Increasing K+ adsorption can be an effective alternative in building an available K pool in soils to optimize crop recovery and minimize losses into the environment. We hypothesized that long-term fertilization might...Increasing K+ adsorption can be an effective alternative in building an available K pool in soils to optimize crop recovery and minimize losses into the environment. We hypothesized that long-term fertilization might change K+ adsorption because of changes in the chemical and mineralogical properties of a rice (Oryza sativa L.). The aims of this study were (i) to determine clay minerals in paddy soil clay size fractions using X-ray diffraction methods and a numerical diagramdecomposition method; (ii) to measure K+ adsorption isotherms before and after H202 oxidation of organic matter, and (iii) to investigate whether K+ adsorption is correlated with changes in soil chemical and mineral properties. The 30-yr longterm fertilization treatments caused little change in soil organic C (SOC) but a large variation in soil mineral composition. The whole-clay fraction (〈5 Jam) corresponded more to the fertilization treatment than the fine-clay fraction (〈1 gin) in terms of percentage of illite peak area. The total percentage of vermiculite-chlorite peak area was significantly negatively correlated with the total percentage ofillite peak area in the 〈5 lam soil particles (R=-0.946, P〈0.0006). Different fertilization treatments gave significantly different results in K+ adsorption. The SOC oxidation test showed positive effects of SOC on K+ adsorption at lower K+ concentration (≤120 mg L-0 and negative effects at higher K+ concentration (240 mg L-l). The K+ adsorption by soil clay minerals after SOC oxidization accounted for 60-158% of that by unoxidized soils, suggesting a more important role of soil minerals than SOC on K+ adsorption. The K+ adsorption potential was significantly correlated to the amount of poorly crystallized illite present (R--0.879, P=0.012). The availability of adsorbed K+ for plant growth needs further study.展开更多
The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms...The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(<0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma.展开更多
The Lower Cretaceous Xiagou Formation contains the major source rocks for the crude oils discovered in the Qingxi Sag and the South Uplift in the Jiuquan Basin, northwestern China. The Xiagou Formation source rock was...The Lower Cretaceous Xiagou Formation contains the major source rocks for the crude oils discovered in the Qingxi Sag and the South Uplift in the Jiuquan Basin, northwestern China. The Xiagou Formation source rock was formed in a closed,anoxic, reducing, alkaline lacustrine environment with a high salinity. Its high content of brittle minerals is favorable for the fracturing of reservoirs in source rock formations in the Qingxi Sag. The Xiagou Formation contains a great number of fair to excellent source rocks, and their organic matter(OM) came chiefly from plankton/algae and high plants as well as possibly bacterial organisms. The Xiagou Formation source rocks mainly contain Type II OM and some Type III and Type I OM, with good oil-generating potential. The source rock maturity is mainly in the early-mature and mature stages, and its Rovalue corresponding to oil peak is about 0.8%, which is lower than classic oil peak Rovalue of 1.0%; therefore, a great deal of hydrocarbon was generated before the classic oil peak Ro= 1.0%. Mature source rock in the Xiagou Formation tends to be distributed in the older members and at a greater depth. There is a better exploration potential of tight oil in the deep Qingxi Sag.展开更多
The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Iminer...The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.展开更多
Objective: To analyse the phytochemical contents of leaf, stem bark and root of Jatropha curcas(J. curcas) in four solvent extracts and their proximate and mineral compositions. Methods: Standard analytical procedures...Objective: To analyse the phytochemical contents of leaf, stem bark and root of Jatropha curcas(J. curcas) in four solvent extracts and their proximate and mineral compositions. Methods: Standard analytical procedures were used for the determination of phytochemicals, proximate and mineral compositions of the leaf, stem bark and root extracts of J. curcas. Results: Results of the analysis showed the presence of polyphenols, flavonoids, alkaloids, cardiac glycosides, coumarins, saponins, terpenoids, steroids, triterpenoid saponins, carotenoids, phlobatannins and tannins in the leaf, stem bark and root of all the solvent extracts. Flavonoids were present in the highest amount in the ethyl acetate extracts of the leaf(7.35% ± 0.02%), stem bark(4.12% ± 0.01%) and root(3.35% ± 0.02%) followed by polyphenols in the methanol extracts of leaf(4.62% ± 0.02%), stem bark(2.77% ± 0.05%) and root(2.49% ± 0.02%). Poly-acetylated compounds were absent in all the solvent extracts of the leaf, stem bark and root. However, some anti-nutritional agents such as oxalates, phytates and cyanates were present in all the solvent extracts of the leaf, stem bark and root except the ethyl acetate. Phytates were high in the aqueous solvent of the leaf(6.12% ± 0.00%) but low in the stem bark(1.00% ± 0.05%) and root(0.89% ± 0.03%). Proximate composition showed appreciable amounts of total carbohydrate(36.33% ± 0.72%), crude protein(26.00% ± 0.47%) and reducing sugars(5.87% ± 0.14%) in the leaf, while crude fat was more in the stem bark(16.70% ± 0.30%). There was corresponding substantial energy in the leaf [(1 514.77 ± 20.87) kJ /100 g] and stem bark [(907.00 ± 8.52) kJ /100 g]. Moisture and ash contents of the leaf, stem bark and root were within acceptable limits for the use in drugs formulation. The mineral composition showed substantial amounts of important elements such as Fe, Ca, Na, Mg and Zn. Others were P, K and Se. Conclusions: The outcome of this study suggests that the leaf, stem bark and root of J. curcas have very good medicinal potentials, meet the standard requirements for drug formulation and serve as good sources of energy and nutrients except for the presence of some anti-nutritional elements predominant in the leaf.展开更多
Adult (ADS) and larva stages of palm weevil Rhynchophorus phoenicis were analyzed for their nutritional potentials using proximate and mineral contents as indices. The early larva stage (ELS) contains the highest mois...Adult (ADS) and larva stages of palm weevil Rhynchophorus phoenicis were analyzed for their nutritional potentials using proximate and mineral contents as indices. The early larva stage (ELS) contains the highest moisture content of 11.94% while ADS has the least value of 4.79%. The late larva stage (LLS) has the highest protein content of 10.51% while ADS contains 8.43%. Ash content is highest in ELS with a value of 2.37% and lowest in ADS with a value of 1.43%. ELS and LLS have the highest (22.14%) and lowest (17.22%) fibre contents respectively. The values of potassium, magnesium and iron in ELS were (455.00±21.21), (60.69±2.57) and (6.50±3.40) mg/kg while LLS recorded (457.50±10.61), (43.52±1.37) and (6.00±1.10) mg/kg and ADS recorded (372.50±24.75), (53.31±1.88) and (22.90±3.70) mg/kg. Chromium, phosphorus, nickel, calcium, lead, man- ganese and zinc were also detected. Copper was not detected in any of the samples. In all the developmental stages the protein solubilities were pH dependent with the minimum protein solubilities occurring at acidic pH while the maximum protein solu- bilities occurred at alkaline pH.展开更多
Wheat germ is reckoned valuable healthful functional food. The present investigation was performed to assess nutritional status of wheat biscuits and wheat germ fortified biscuits. Study included determination of gros...Wheat germ is reckoned valuable healthful functional food. The present investigation was performed to assess nutritional status of wheat biscuits and wheat germ fortified biscuits. Study included determination of gross chemical composition, caloric value, minerals (Mn, Ca, Fe, Cu, P, Na and K), vitamins (C, Folic acid, A, and E), and amino acid composition of wheat biscuits and 15%, 20% wheat germ fortified biscuits. Likewise physical and sensory characteristics of studied biscuits were assessed. The data revealed that 20% wheat germ fortified biscuits proved to be nutritious functional healthful food. It improved both physical, sensory characteristics and recorded the highest crude protein (12.20%), crude fiber (2%), and the least fat (9.63%), moisture (3.01%), and caloric value (436.31 Kcal/100g). While it recorded the highest Mn and Cu contents as well as increased vitamins C, Folic acid, A, and E. Besides, 20% wheat germ fortified biscuits increased all the eight essential amino acids contents resulting in an improvement of the nutritive value of wheat biscuits. Therefore it could be recommended for caloric reduced diets for obese and overweight persons. Likewise, it should be increasing interest as an ingredient in the industry as functional and healthy foods formulations as biscuits, bread and cakes.展开更多
The aim of this work was to contribute to our knowledge of the proximate composition, mineral and vitamin content of 20 edible wild plants used as spices in Cameroon. The plant species were collected from 3 different ...The aim of this work was to contribute to our knowledge of the proximate composition, mineral and vitamin content of 20 edible wild plants used as spices in Cameroon. The plant species were collected from 3 different markets in the West Region of Cameroon and analysed for their content of crude proteins, and lipid, ash, moisture, available sugars, total phenols, carotenoids, minerals (Ca, Zn, K, Na, Mg, Al, Mn, Cu and Se), and vitamins (A, E and C) as well as for their pH and colour. Results revealed that all the plants were low in moisture (7.7 to 10.5 g/100 g) but high in ash content (7.7 to 10.5 g/100 g). Hua gabonii (bark) (1594.5 mg/100 g) was relative source of calcium, Echinops giganteus (206.4 mg/100 g) exhibited the highest level of iron and Scorodophleus zenkeri (310.0 μg/100 g) the highest level of selenium. Generally all the plants were found to contain low levels of Zn, Cu and Mg. Wide variations were observed for the pro- teins and available sugars among the samples. The lipid content of some of the plants were surprisingly relatively high as was the case with Monodora myristica (53.4 g/100 g), Xylopia aethiopica (33.7 g/100 g), Fagara leprieuri (32.1 g/100 g), and Aframomum daniellii (23.1 g/100 g). All the plants were rich in phenols, carotenoids, vitamin E and C. They are dark in colour and in solution they tended to provoke a fair acidification.展开更多
Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level o...Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.展开更多
34 samples of loess-paleosol from the Luochuan and kifeng sections in the Loess Plateau, north-ern China were separated into sand, silt and clay fractions and analyzed for their mineral composi -tions. The results ind...34 samples of loess-paleosol from the Luochuan and kifeng sections in the Loess Plateau, north-ern China were separated into sand, silt and clay fractions and analyzed for their mineral composi -tions. The results indicate that there is almost no difference between loess and paleosol in mineralcomposition. Major mineral species are quartz, mica, feIdspar and chlorite, accounhng for about88-92% of the total, other minerals are kandite, smectite, vermiculite and a few heavy minerals. Thecalcite, magnetite and hematite were not taken into consideration because of their removal in the pro-cess of sample preparation. The main difference with respect to the mineral composition of samplescollected from different sections and different stratigraphic leveIs lies in the amount and grain sise ofminerals hosted. Comparisons between the Luochuan section and the kifeng section, between paleosoland loess and between the upper part and the lower part of some paleosol layers show that the for-mers contain less feldspar but more mica and vermiculite and are finer in grain sise, indicahng theco-occurrence of both biochemical weathering process responsible for mineral change and physicalweathering process leading to grain-stie change during the soiI-forming processes. This result favourssuch an explanation of the soi1-forming mechanism that loess deposition and paleosol developmentoccurred synchronously, though the rate of soil formation was greater than that of loess deposition,thus leading to soil development.展开更多
The aim of this study was to determine the chemical composition, minerals and antioxidants of heart of date palm from three Saudi cultivars. Moisture (ranged from 80.44% - 82.82%) was the predominant component in the ...The aim of this study was to determine the chemical composition, minerals and antioxidants of heart of date palm from three Saudi cultivars. Moisture (ranged from 80.44% - 82.82%) was the predominant component in the heart date palm. Sukkari cultivar had the highest protein (5.27%) and ash (7.9%) compared to the other two cultivars. Fat was low in the three cultivars. Sucrose was the predominant sugar in the heart date palm and ranged from 7.65% - 20.25%. Potassium was the predominant mineral in the heart date palm and was significantly (p < 0.05) higher in Sukkari and Solleg compared to the Naboat Saif cultivar. Sulfur and chloride were next to potassium in abundance in the three heart date palm cultivars. Total phenols and flavonoids were higher in Solleg compared to the other two cultivars. IC50 for Solleg, Sukkari and Naboat Saif were 0.12, 0.13 and 0.29 mg/ml, respectively. The results of the present study may highlight the potential importance of heart of date palm as a product rich in essential minerals and antioxidants. Future researches are needed to explore other characteristics of heart of date palm which could be considered for human nutrition.展开更多
Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and ...Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but FeOand Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The KO content of glauconite is low or absent, indicating its short formation time.展开更多
Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(...Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis(MLA) and scanning electron microscopy(SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale.Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them.展开更多
We analyzed the major and trace element chemical compositions of 66 granitic rocks from 15 different areas in Japan. The intrusions from which the samples were collected were associated with Pb-Zn, Mo, Cu-Fe, Sn, or W...We analyzed the major and trace element chemical compositions of 66 granitic rocks from 15 different areas in Japan. The intrusions from which the samples were collected were associated with Pb-Zn, Mo, Cu-Fe, Sn, or W mineralization and, for comparison, samples were also collected from intrusions not associated with any metal mineralization. The analyses indicated that the granitic rocks associated with Pb-Zn, Mo, or Cu-Fe mineralization were granites, granodiorites, or diorites, and that they were all I-type and formed in a volcanic arc tectonic setting. The granitic rocks associated with Sn or W mineralization and barren granitic rocks were classified as granites and as I-type with the exception of a few S-type granitic rocks. Most of the Sn- or W-associated granitic rocks and barren granitic rocks are thought to have formed in a volcanic arc tectonic setting. The Pb-Zn-, Mo-, or Cu-Fe-associated granitic rocks rarely shows negative Eu anomalies and a few of them are adakitic rocks, whereas all of the Sn- or W-associated granitic rocks and barren granitic rocks show negative Eu anomalies. For these Japanese granitic rocks, the contents of K2O, La, Y, Rb, Ta, Pb, Th, U, and REEs other than Eu increase with increasing SiO2. Conversely, the contents of major components other than Na2O and K2O and the trace components V, Zn, Sr, Eu, and Sc decrease with increasing SiO2. The Zr, Sn, and Hf abundances increase with increasing SiO2 up to 70 wt%, but their abundances decrease when the SiO2 exceeds 70 wt%. This suggests that granitic magma is saturated with these elements at 70 wt% of SiO2, approximately.展开更多
文摘This work aimed, on the one hand, to determine the mineral and phytochemical composition of Carica papaya in order to guarantee the food safety of consumers and on the other hand, to evaluate the acute toxicity of papaya seeds. The papayas were bought at the Mzée market in Lubumbashi and Selembao in Kinshasa. Fruit sampling was done according to the ISO 7002 standard on agricultural and food products;the papayas were firm, mature, and without stains or physical damage. The analysis results of the papaya pulp showed both for the samples from the city of Lubumbashi and for the city province of Kinshasa that it contains respectively 85.87% and 84.46% water, 0.59% and 0.53% ash content. The mineral evaluation of our two samples presented a potassium content of 200 ± 8 mg, magnesium 13.12 ± 3 mg, calcium 22.15 ± 2 mg, sodium 3 mg ± 0.5 for the sample from Lubumbashi and 192.32 ± 8 mg of potassium, 14.458 ± 3 mg of magnesium, 20.58 ± 2 mg of calcium and 3.58 ± 0.5 mg of sodium for the sample from Kinshasa in macroelements. Concerning the trace elements, after analysis, we found zinc content (0.29 ± 0.1 mg and 0.12 ± 0.1 mg), copper (0.02 ± 0.01 mg and 0.14 ± 0.01 mg), and iron (2.22 ± 0.5 mg and 2.04 ± 0.5 mg) respectively for Lubumbashi and Kinshasa. The chemical screening indicates the presence of alkaloids, saponosides, tannins catechics, flavonoids and anthocyanins in the palm wine and ethanolic extract of the seeds of Carica papaya and an absence of cyanogenic glycosides and gallic tannins. With mild toxicity, the seeds of the fruit of Carica papaya L. can be used with moderate risk by the population.
文摘Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is not well known. Three distinct soil samples were used in this investigation. The findings indicated the effect of varied mineral composition proportions and fines amount on the liquid limit, plastic limit, and plasticity index as assessed by the Casagrande test and hand-rolling method. The fluctuation of maximum dry density and optimal moisture content with these three soils has also been studied. Furthermore, correlations were established to indicate the compaction parameters and the amount of minerals and particles in the soil. The data show that the mineral content of the soil has a direct impact on the Atterberg limits and compaction characteristics. Soils containing larger percentages of expansive minerals, such as montmorillonite, have more flexibility and volume change capability. Mineral composition influences compaction parameters such as maximum dry density, ideal water content, axial strain, and axial stress. Soils with a larger proportion of fines, such as Soil 2 and Soil 3, have stronger flexibility and lower compaction qualities, with higher ideal water content and lower maximum dry density. Soil 1 has moderate flexibility and intermediate compaction qualities due to its low fines percentage. The effect of different mineral compositions and fines on the Atterberg limits and compaction characteristics of soils can be used to predict the behavior of compacted soils encountered in engineering practices, reducing the time and effort required to assess soil suitability for engineering use.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
基金supported by the Beijing Natural Science Foundation,China(No.2242055).
文摘Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant reserves,low cost,excellent mechanical prop-erties,and chemical stability.Over the past decades,various methods,such as those involving heat,acid,alkali,organic amine,amino sil-ane,and ionic liquid,have been employed to enhance the CO_(2) capture performance of natural minerals to attain high specific surface area,a large number of pore structures,and rich active sites.Future research on CO_(2) capture by natural minerals will focus on the full utiliza-tion of the properties of natural minerals,adoption of suitable modification methods,and preparation of composite materials with high specific surface area and rich active sites.In addition,we provide a summary of the principle and technical route of direct and indirect mineralization of CO_(2) by natural minerals.This process uses minerals with high calcium and magnesium contents,such as forsterite(Mg_(2)SiO_(4)),serpentine[Mg_(3)Si_(2)O(OH)_(4)],and wollastonite(CaSiO_(3)).The research status of indirect mineralization of CO_(2) using hydro-chloric acid,acetic acid,molten salt,and ammonium salt as media is also introduced in detail.The recovery of additives and high-value-added products during the mineralization process to increase economic benefits is another focus of future research on CO_(2) mineralization by natural minerals.
文摘Sairme mineral water, one of the famous mineral waters in Georgia, is renowned for its exceptional healing properties. The distinctiveness and therapeutic benefits of the naturally sourced mineral water, known as “Sairme”, stem from its rich array of microelements, notably including iron and manganese. Since 1948, the bottling of Sairme mineral water has been a prominent activity. Named after the Sairme deposit, this mineral water is packaged in various formats to cater to diverse consumer preferences. The bottling process involves transporting the mineral water from wells to the bottling plant through pipelines. Prior to bottling, the mineral water undergoes meticulous processing stages in adherence to current Georgian and international regulations. This process ensures that the concentration of trace elements in the bottled water is minimized, maintaining its purity and quality. Given the importance of preserving the microelements present in bottled mineral water, our research is dedicated to optimizing the technological process. Our objective is to safeguard the valuable microelements while ensuring the highest standards of quality and safety in the final product.
基金funded by the the Public Service Sectors (Agriculture) Research Special Funds, China(201203013-06)supported in partial by the International Plant Nutrition Institute (IPNI ChinaProgram: Hunan-16)the Key Technologies R&D Program of China during the 12th Five-Year-Plan period(2012BAD05B05-3)
文摘Increasing K+ adsorption can be an effective alternative in building an available K pool in soils to optimize crop recovery and minimize losses into the environment. We hypothesized that long-term fertilization might change K+ adsorption because of changes in the chemical and mineralogical properties of a rice (Oryza sativa L.). The aims of this study were (i) to determine clay minerals in paddy soil clay size fractions using X-ray diffraction methods and a numerical diagramdecomposition method; (ii) to measure K+ adsorption isotherms before and after H202 oxidation of organic matter, and (iii) to investigate whether K+ adsorption is correlated with changes in soil chemical and mineral properties. The 30-yr longterm fertilization treatments caused little change in soil organic C (SOC) but a large variation in soil mineral composition. The whole-clay fraction (〈5 Jam) corresponded more to the fertilization treatment than the fine-clay fraction (〈1 gin) in terms of percentage of illite peak area. The total percentage of vermiculite-chlorite peak area was significantly negatively correlated with the total percentage ofillite peak area in the 〈5 lam soil particles (R=-0.946, P〈0.0006). Different fertilization treatments gave significantly different results in K+ adsorption. The SOC oxidation test showed positive effects of SOC on K+ adsorption at lower K+ concentration (≤120 mg L-0 and negative effects at higher K+ concentration (240 mg L-l). The K+ adsorption by soil clay minerals after SOC oxidization accounted for 60-158% of that by unoxidized soils, suggesting a more important role of soil minerals than SOC on K+ adsorption. The K+ adsorption potential was significantly correlated to the amount of poorly crystallized illite present (R--0.879, P=0.012). The availability of adsorbed K+ for plant growth needs further study.
基金supported by a National Program on Key Basic Research Project(973 Program,Grant No.2011CB808903)National Natural Science Foundation of China(Grant Nos.41073030 and 41121002)a 'CAS Hundred Talents' project under Chinese Academy of Sciences to CYW and a GIGCAS 135 project Y234041001
文摘The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(&lt;0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma.
基金supported by the Fourth Petroleum Resource Evaluation Project of China (Grant No. 2013E050209)the National S&T Major Project of China (Grant No. 2012E330)
文摘The Lower Cretaceous Xiagou Formation contains the major source rocks for the crude oils discovered in the Qingxi Sag and the South Uplift in the Jiuquan Basin, northwestern China. The Xiagou Formation source rock was formed in a closed,anoxic, reducing, alkaline lacustrine environment with a high salinity. Its high content of brittle minerals is favorable for the fracturing of reservoirs in source rock formations in the Qingxi Sag. The Xiagou Formation contains a great number of fair to excellent source rocks, and their organic matter(OM) came chiefly from plankton/algae and high plants as well as possibly bacterial organisms. The Xiagou Formation source rocks mainly contain Type II OM and some Type III and Type I OM, with good oil-generating potential. The source rock maturity is mainly in the early-mature and mature stages, and its Rovalue corresponding to oil peak is about 0.8%, which is lower than classic oil peak Rovalue of 1.0%; therefore, a great deal of hydrocarbon was generated before the classic oil peak Ro= 1.0%. Mature source rock in the Xiagou Formation tends to be distributed in the older members and at a greater depth. There is a better exploration potential of tight oil in the deep Qingxi Sag.
基金financially supported by the Key R&D Program of China(Grant No.2017YFC0602402)the Innovationdriven Plan of Central South University,China(Grant No.2015CX008)+2 种基金the China Postdoctoral Science Foundation(Grant No.2017M622597)Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(Grant No.2019YSJS23)the Natural Science Foundation of Hunan Province(Grant No.2017JJ3138)
文摘The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.
文摘Objective: To analyse the phytochemical contents of leaf, stem bark and root of Jatropha curcas(J. curcas) in four solvent extracts and their proximate and mineral compositions. Methods: Standard analytical procedures were used for the determination of phytochemicals, proximate and mineral compositions of the leaf, stem bark and root extracts of J. curcas. Results: Results of the analysis showed the presence of polyphenols, flavonoids, alkaloids, cardiac glycosides, coumarins, saponins, terpenoids, steroids, triterpenoid saponins, carotenoids, phlobatannins and tannins in the leaf, stem bark and root of all the solvent extracts. Flavonoids were present in the highest amount in the ethyl acetate extracts of the leaf(7.35% ± 0.02%), stem bark(4.12% ± 0.01%) and root(3.35% ± 0.02%) followed by polyphenols in the methanol extracts of leaf(4.62% ± 0.02%), stem bark(2.77% ± 0.05%) and root(2.49% ± 0.02%). Poly-acetylated compounds were absent in all the solvent extracts of the leaf, stem bark and root. However, some anti-nutritional agents such as oxalates, phytates and cyanates were present in all the solvent extracts of the leaf, stem bark and root except the ethyl acetate. Phytates were high in the aqueous solvent of the leaf(6.12% ± 0.00%) but low in the stem bark(1.00% ± 0.05%) and root(0.89% ± 0.03%). Proximate composition showed appreciable amounts of total carbohydrate(36.33% ± 0.72%), crude protein(26.00% ± 0.47%) and reducing sugars(5.87% ± 0.14%) in the leaf, while crude fat was more in the stem bark(16.70% ± 0.30%). There was corresponding substantial energy in the leaf [(1 514.77 ± 20.87) kJ /100 g] and stem bark [(907.00 ± 8.52) kJ /100 g]. Moisture and ash contents of the leaf, stem bark and root were within acceptable limits for the use in drugs formulation. The mineral composition showed substantial amounts of important elements such as Fe, Ca, Na, Mg and Zn. Others were P, K and Se. Conclusions: The outcome of this study suggests that the leaf, stem bark and root of J. curcas have very good medicinal potentials, meet the standard requirements for drug formulation and serve as good sources of energy and nutrients except for the presence of some anti-nutritional elements predominant in the leaf.
文摘Adult (ADS) and larva stages of palm weevil Rhynchophorus phoenicis were analyzed for their nutritional potentials using proximate and mineral contents as indices. The early larva stage (ELS) contains the highest moisture content of 11.94% while ADS has the least value of 4.79%. The late larva stage (LLS) has the highest protein content of 10.51% while ADS contains 8.43%. Ash content is highest in ELS with a value of 2.37% and lowest in ADS with a value of 1.43%. ELS and LLS have the highest (22.14%) and lowest (17.22%) fibre contents respectively. The values of potassium, magnesium and iron in ELS were (455.00±21.21), (60.69±2.57) and (6.50±3.40) mg/kg while LLS recorded (457.50±10.61), (43.52±1.37) and (6.00±1.10) mg/kg and ADS recorded (372.50±24.75), (53.31±1.88) and (22.90±3.70) mg/kg. Chromium, phosphorus, nickel, calcium, lead, man- ganese and zinc were also detected. Copper was not detected in any of the samples. In all the developmental stages the protein solubilities were pH dependent with the minimum protein solubilities occurring at acidic pH while the maximum protein solu- bilities occurred at alkaline pH.
文摘Wheat germ is reckoned valuable healthful functional food. The present investigation was performed to assess nutritional status of wheat biscuits and wheat germ fortified biscuits. Study included determination of gross chemical composition, caloric value, minerals (Mn, Ca, Fe, Cu, P, Na and K), vitamins (C, Folic acid, A, and E), and amino acid composition of wheat biscuits and 15%, 20% wheat germ fortified biscuits. Likewise physical and sensory characteristics of studied biscuits were assessed. The data revealed that 20% wheat germ fortified biscuits proved to be nutritious functional healthful food. It improved both physical, sensory characteristics and recorded the highest crude protein (12.20%), crude fiber (2%), and the least fat (9.63%), moisture (3.01%), and caloric value (436.31 Kcal/100g). While it recorded the highest Mn and Cu contents as well as increased vitamins C, Folic acid, A, and E. Besides, 20% wheat germ fortified biscuits increased all the eight essential amino acids contents resulting in an improvement of the nutritive value of wheat biscuits. Therefore it could be recommended for caloric reduced diets for obese and overweight persons. Likewise, it should be increasing interest as an ingredient in the industry as functional and healthy foods formulations as biscuits, bread and cakes.
文摘The aim of this work was to contribute to our knowledge of the proximate composition, mineral and vitamin content of 20 edible wild plants used as spices in Cameroon. The plant species were collected from 3 different markets in the West Region of Cameroon and analysed for their content of crude proteins, and lipid, ash, moisture, available sugars, total phenols, carotenoids, minerals (Ca, Zn, K, Na, Mg, Al, Mn, Cu and Se), and vitamins (A, E and C) as well as for their pH and colour. Results revealed that all the plants were low in moisture (7.7 to 10.5 g/100 g) but high in ash content (7.7 to 10.5 g/100 g). Hua gabonii (bark) (1594.5 mg/100 g) was relative source of calcium, Echinops giganteus (206.4 mg/100 g) exhibited the highest level of iron and Scorodophleus zenkeri (310.0 μg/100 g) the highest level of selenium. Generally all the plants were found to contain low levels of Zn, Cu and Mg. Wide variations were observed for the pro- teins and available sugars among the samples. The lipid content of some of the plants were surprisingly relatively high as was the case with Monodora myristica (53.4 g/100 g), Xylopia aethiopica (33.7 g/100 g), Fagara leprieuri (32.1 g/100 g), and Aframomum daniellii (23.1 g/100 g). All the plants were rich in phenols, carotenoids, vitamin E and C. They are dark in colour and in solution they tended to provoke a fair acidification.
基金jointly supported by a grant from the National Natural Science Foundation of China(No.41490634)the National Key Basic Research Special Foundation of China(No.2015FY210500)
文摘Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.
文摘34 samples of loess-paleosol from the Luochuan and kifeng sections in the Loess Plateau, north-ern China were separated into sand, silt and clay fractions and analyzed for their mineral composi -tions. The results indicate that there is almost no difference between loess and paleosol in mineralcomposition. Major mineral species are quartz, mica, feIdspar and chlorite, accounhng for about88-92% of the total, other minerals are kandite, smectite, vermiculite and a few heavy minerals. Thecalcite, magnetite and hematite were not taken into consideration because of their removal in the pro-cess of sample preparation. The main difference with respect to the mineral composition of samplescollected from different sections and different stratigraphic leveIs lies in the amount and grain sise ofminerals hosted. Comparisons between the Luochuan section and the kifeng section, between paleosoland loess and between the upper part and the lower part of some paleosol layers show that the for-mers contain less feldspar but more mica and vermiculite and are finer in grain sise, indicahng theco-occurrence of both biochemical weathering process responsible for mineral change and physicalweathering process leading to grain-stie change during the soiI-forming processes. This result favourssuch an explanation of the soi1-forming mechanism that loess deposition and paleosol developmentoccurred synchronously, though the rate of soil formation was greater than that of loess deposition,thus leading to soil development.
文摘The aim of this study was to determine the chemical composition, minerals and antioxidants of heart of date palm from three Saudi cultivars. Moisture (ranged from 80.44% - 82.82%) was the predominant component in the heart date palm. Sukkari cultivar had the highest protein (5.27%) and ash (7.9%) compared to the other two cultivars. Fat was low in the three cultivars. Sucrose was the predominant sugar in the heart date palm and ranged from 7.65% - 20.25%. Potassium was the predominant mineral in the heart date palm and was significantly (p < 0.05) higher in Sukkari and Solleg compared to the Naboat Saif cultivar. Sulfur and chloride were next to potassium in abundance in the three heart date palm cultivars. Total phenols and flavonoids were higher in Solleg compared to the other two cultivars. IC50 for Solleg, Sukkari and Naboat Saif were 0.12, 0.13 and 0.29 mg/ml, respectively. The results of the present study may highlight the potential importance of heart of date palm as a product rich in essential minerals and antioxidants. Future researches are needed to explore other characteristics of heart of date palm which could be considered for human nutrition.
基金The National Programme on Global Change and Air-sea Interaction under contract No.GASI-02-SCS-CJ03China Geological Survey:Continental Shelf Drilling Program under contract No.GZH201100202China-Thailand Cooperation Project"Research on Vulnerability of Coastal Zones"
文摘Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but FeOand Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The KO content of glauconite is low or absent, indicating its short formation time.
基金supported by the National Natural Science Foundation of China (Grant No. 42072194, U1910205)the Fundamental Research Funds for the Central Universities (800015Z1190, 2021YJSDC02)。
文摘Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis(MLA) and scanning electron microscopy(SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale.Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them.
文摘We analyzed the major and trace element chemical compositions of 66 granitic rocks from 15 different areas in Japan. The intrusions from which the samples were collected were associated with Pb-Zn, Mo, Cu-Fe, Sn, or W mineralization and, for comparison, samples were also collected from intrusions not associated with any metal mineralization. The analyses indicated that the granitic rocks associated with Pb-Zn, Mo, or Cu-Fe mineralization were granites, granodiorites, or diorites, and that they were all I-type and formed in a volcanic arc tectonic setting. The granitic rocks associated with Sn or W mineralization and barren granitic rocks were classified as granites and as I-type with the exception of a few S-type granitic rocks. Most of the Sn- or W-associated granitic rocks and barren granitic rocks are thought to have formed in a volcanic arc tectonic setting. The Pb-Zn-, Mo-, or Cu-Fe-associated granitic rocks rarely shows negative Eu anomalies and a few of them are adakitic rocks, whereas all of the Sn- or W-associated granitic rocks and barren granitic rocks show negative Eu anomalies. For these Japanese granitic rocks, the contents of K2O, La, Y, Rb, Ta, Pb, Th, U, and REEs other than Eu increase with increasing SiO2. Conversely, the contents of major components other than Na2O and K2O and the trace components V, Zn, Sr, Eu, and Sc decrease with increasing SiO2. The Zr, Sn, and Hf abundances increase with increasing SiO2 up to 70 wt%, but their abundances decrease when the SiO2 exceeds 70 wt%. This suggests that granitic magma is saturated with these elements at 70 wt% of SiO2, approximately.