Wheat is an important source of essential minerals for human body. Breeding wheat with high grain mineral concentration thus benefits human health. The objective of present study was to identify quantitative trait lo...Wheat is an important source of essential minerals for human body. Breeding wheat with high grain mineral concentration thus benefits human health. The objective of present study was to identify quantitative trait loci (QTLs) controlling grain mineral concentration and to evaluate the relation between nitrogen (N) and other essential minerals in winter wheat. Wheat grains were harvested from field experiment which conducted in China and analyzed for this purpose. Forty-three QTLs controlling grain mineral concentration and nitrogen-related traits were detected by using a double haploid (DH) population derived from winter wheat varieties Hanxuan 10 and Lumai 14. Chromosomes 4D and 5A might be very important in controlling mineral status in wheat grains. Significant positive correlations were found between grain nitrogen concentration (GNC) and nutrients Fe, Mn, Cu, Mg concentrations (FeGC, MnGC, CuGC, MgGC). Flag leafN concentration at anthesis (FLNC) significantly and positively correlated with GNC, FeGC, MnGC, and CuGC. The study extended our knowledge on minerals in wheat grains and suggested which interactions between minerals should be considered in future breeding program.展开更多
基金supported by the National Basic Research Program of China (2009CB118300 and 2009CB118605)the Innovative Group Grant of NSFC, China (31121062)the Special Fund for Agro-Scientific Research in the Public Interest, China (201103003)
文摘Wheat is an important source of essential minerals for human body. Breeding wheat with high grain mineral concentration thus benefits human health. The objective of present study was to identify quantitative trait loci (QTLs) controlling grain mineral concentration and to evaluate the relation between nitrogen (N) and other essential minerals in winter wheat. Wheat grains were harvested from field experiment which conducted in China and analyzed for this purpose. Forty-three QTLs controlling grain mineral concentration and nitrogen-related traits were detected by using a double haploid (DH) population derived from winter wheat varieties Hanxuan 10 and Lumai 14. Chromosomes 4D and 5A might be very important in controlling mineral status in wheat grains. Significant positive correlations were found between grain nitrogen concentration (GNC) and nutrients Fe, Mn, Cu, Mg concentrations (FeGC, MnGC, CuGC, MgGC). Flag leafN concentration at anthesis (FLNC) significantly and positively correlated with GNC, FeGC, MnGC, and CuGC. The study extended our knowledge on minerals in wheat grains and suggested which interactions between minerals should be considered in future breeding program.